""" Script to run experiment on smart augmentation. """ from LeNet import * from dataug import * #from utils import * from train_utils import * # Use available TF (see transformations.py) tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', #'Rotate', #'TranslateX', #'TranslateY', #'ShearX', #'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## #'Contrast', #'Color', #'Brightness', #'Sharpness', #'Posterize', #'Solarize', #=>Image entre [0,1] #Pas opti pour des batch #Color TF (Common mag scale) #'+Contrast', #'+Color', #'+Brightness', #'+Sharpness', #'-Contrast', #'-Color', #'-Brightness', #'-Sharpness', #'=Posterize', #'=Solarize', ## Bad Tranformations ## # Bad Geometric TF # #'BShearX', #'BShearY', #'BTranslateX-', #'BTranslateX-', #'BTranslateY', #'BTranslateY-', #'BadContrast', #'BadBrightness', #'Random', #'RandBlend' ] device = torch.device('cuda') #Select device to use if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility #Increase reproductibility torch.manual_seed(0) np.random.seed(0) ########################################## if __name__ == "__main__": #Task to perform tasks={ #'classic', 'aug_model' } #Parameters n_inner_iter = 1 epochs = 150 dataug_epoch_start=0 optim_param={ 'Meta':{ 'optim':'Adam', 'lr':1e-2, #1e-2 }, 'Inner':{ 'optim': 'SGD', 'lr':1e-2, #1e-2 'momentum':0.9, #0.9 } } #Models model = LeNet(3,10) #model = ResNet(num_classes=10) #import torchvision.models as models #model=models.resnet18() #### Classic #### if 'classic' in tasks: t0 = time.process_time() model = model.to(device) print("{} on {} for {} epochs".format(str(model), device_name, epochs)) log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=20) #log= train_classic_higher(model=model, epochs=epochs) exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log} print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs".format(str(model),epochs) with open("../res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') plot_res(log, fig_name="../res/"+filename) print('Execution Time : %.00f '%(exec_time)) print('-'*9) #### Augmented Model #### if 'aug_model' in tasks: t0 = time.process_time() tf_dict = {k: TF.TF_dict[k] for k in tf_names} model = Higher_model(model) #run_dist_dataugV3 aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV3(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, opt_param=optim_param, print_freq=20, unsup_loss=1, hp_opt=False, save_sample_freq=None) exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter) with open("../res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') except: print("Failed to save logs :",f.name) try: plot_resV2(log, fig_name="../res/"+filename, param_names=aug_model.TF_names()) except: print("Failed to plot res") print('Execution Time : %.00f '%(exec_time)) print('-'*9)