from model import * from dataug import * #from utils import * from train_utils import * import torchvision.models as models model_list={models.resnet: ['resnet18', 'resnet50','wide_resnet50_2']} #lr=0.1 optim_param={ 'Meta':{ 'optim':'Adam', 'lr':1e-2, #1e-2 }, 'Inner':{ 'optim': 'SGD', 'lr':1e-1, #1e-2 #1e-1 for ResNet 'momentum':0.9, #0.9 } } res_folder="../res/benchmark/CIFAR10" epochs= 200 dataug_epoch_starts=0 # Use available TF (see transformations.py) tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch ## Bad Tranformations ## # Bad Geometric TF # #'BShearX', #'BShearY', #'BTranslateX-', #'BTranslateX-', #'BTranslateY', #'BTranslateY-', #'BadContrast', #'BadBrightness', #'Random', #'RandBlend' ] tf_dict = {k: TF.TF_dict[k] for k in tf_names} device = torch.device('cuda') if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) torch.backends.cudnn.benchmark = True #Faster if same input size #Not recommended for reproductibility #Increase reproductibility torch.manual_seed(0) np.random.seed(0) ########################################## if __name__ == "__main__": ### Benchmark ### ''' for model_type in model_list.keys(): for model_name in model_list[model_type]: model = getattr(model_type, model_name)(pretrained=False) t0 = time.process_time() model = Higher_model(model) #run_dist_dataugV3 if n_inner_iter!=0: aug_model = Augmented_model( Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device) else: aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=n_tf), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV3(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, opt_param=optim_param, print_freq=epochs/4, unsup_loss=1, hp_opt=False, save_sample_freq=None) exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run) with open("../res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') except: print("Failed to save logs :",f.name) print('Execution Time : %.00f '%(exec_time)) print('-'*9) ''' ### HP Search ### inner_its = [1] dist_mix = [0.0, 0.5, 0.8, 1.0] dataug_epoch_starts= [0] N_seq_TF= [2, 3, 4] mag_setup = [(True,True), (False, False)] #(FxSh, Independant) #prob_setup = [True, False] nb_run= 3 try: os.mkdir(res_folder) os.mkdir(res_folder+"log/") except FileExistsError: pass for n_inner_iter in inner_its: for n_tf in N_seq_TF: for dist in dist_mix: #for i in TF_nb: for m_setup in mag_setup: #for p_setup in prob_setup: p_setup=False for run in range(nb_run): t0 = time.process_time() model = getattr(model_list.keys()[0], 'resnet18')(pretrained=False) model = Higher_model(model) #run_dist_dataugV3 aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV3(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, opt_param=optim_param, print_freq=epochs/4, unsup_loss=1, hp_opt=False, save_sample_freq=None) exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run) with open("../res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') except: print("Failed to save logs :",f.name) print('Execution Time : %.00f '%(exec_time)) print('-'*9) #'''