""" wide resnet for cifar in pytorch Reference: [1] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016. """ import torch import torch.nn as nn import math #from models.resnet_cifar import BasicBlock def conv3x3(in_planes, out_planes, stride=1): " 3x3 convolution with padding " return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion=1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Wide_ResNet_Cifar(nn.Module): def __init__(self, block, layers, wfactor, num_classes=10): super(Wide_ResNet_Cifar, self).__init__() self.depth=layers[0]*6+2 self.widen_factor=wfactor self.inplanes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer(block, 16*wfactor, layers[0]) self.layer2 = self._make_layer(block, 32*wfactor, layers[1], stride=2) self.layer3 = self._make_layer(block, 64*wfactor, layers[2], stride=2) self.avgpool = nn.AvgPool2d(8, stride=1) self.fc = nn.Linear(64*block.expansion*wfactor, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion) ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def __str__(self): """ Get name of model """ return "Wide_ResNet_cifar%d_%d"%(self.depth,self.widen_factor) def wide_resnet_cifar(depth, width, **kwargs): assert (depth - 2) % 6 == 0 n = int((depth - 2) / 6) return Wide_ResNet_Cifar(BasicBlock, [n, n, n], width, **kwargs) if __name__=='__main__': net = wide_resnet_cifar(20, 10) y = net(torch.randn(1, 3, 32, 32)) print(isinstance(net, Wide_ResNet_Cifar)) print(y.size())