from utils import * tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch #Non fonctionnel #'Auto_Contrast', #Pas opti pour des batch (Super lent) #'Equalize', ] if __name__ == "__main__": #### Comparison #### ## Loss , Acc, Proba = f(epoch) ## files=[ #"res/log/LeNet-100 epochs.json", #"res/log/Aug_mod(Data_augV4(Uniform-4 TF)-LeNet)-100 epochs (dataug:0)- 0 in_it.json", #"res/log/Aug_mod(Data_augV4(Uniform-4 TF)-LeNet)-100 epochs (dataug:50)- 0 in_it.json", #"res/log/Aug_mod(Data_augV4(Uniform-3 TF)-LeNet)-100 epochs (dataug:0)- 0 in_it.json", #"res/log/Aug_mod(Data_augV3(Uniform-3 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json", #"res/log/Aug_mod(Data_augV4(Mix 0,5-3 TF)-LeNet)-100 epochs (dataug:0)- 1 in_it.json", #"res/log/Aug_mod(Data_augV4(Mix 0.5-3 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json", #"res/log/Aug_mod(Data_augV4(Uniform-3 TF)-LeNet)-100 epochs (dataug:0)- 10 in_it.json", #"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 10 in_it.json", #"res/log/Aug_mod(Data_augV4(Uniform-10 TF)-LeNet)-100 epochs (dataug:50)- 0 in_it.json", ] #plot_compare(filenames=files, fig_name="res/compare") ## Acc, Time, Epochs = f(n_tf) ## fig_name="res/TF_nb_tests_compare" inner_its = [10] dataug_epoch_starts= [0] TF_nb = [14]#range(1,14+1) fig, ax = plt.subplots(ncols=3, figsize=(30, 8)) for in_it in inner_its: for dataug in dataug_epoch_starts: filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb] all_data=[] #legend="" for idx, file in enumerate(filenames): #legend+=str(idx)+'-'+file+'\n' with open(file) as json_file: data = json.load(json_file) all_data.append(data) n_tf = [len(x["Param_names"]) for x in all_data] acc = [x["Accuracy"] for x in all_data] epochs = [len(x["Log"]) for x in all_data] time = [x["Time"][0] for x in all_data] #for i in range(len(time)): time[i] *= epochs[i] #Estimation temps total ax[0].plot(n_tf, acc, label="{} in_it/{} dataug".format(in_it,dataug)) ax[1].plot(n_tf, time, label="{} in_it/{} dataug".format(in_it,dataug)) ax[2].plot(n_tf, epochs, label="{} in_it/{} dataug".format(in_it,dataug)) #for data in all_data: #print(np.mean([x["param"] for x in data["Log"]], axis=0)) #print(len(data["Param_names"]), np.argsort(np.argsort(np.mean([x["param"] for x in data["Log"]], axis=0)))) ax[0].set_title('Acc') ax[1].set_title('Time') ax[2].set_title('Epochs') for a in ax: a.legend() fig_name = fig_name.replace('.',',') plt.savefig(fig_name, bbox_inches='tight') plt.close()