from model import * from dataug import * #from utils import * from train_utils import * tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch #Non fonctionnel #'Auto_Contrast', #Pas opti pour des batch (Super lent) #'Equalize', ] device = torch.device('cuda') if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) ########################################## if __name__ == "__main__": n_inner_iter = 10 epochs = 2 dataug_epoch_start=0 #### Classic #### ''' #model = LeNet(3,10).to(device) model = WideResNet(num_classes=10, wrn_size=16).to(device) #model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device) #model.augment(mode=False) print(str(model), 'on', device_name) log= train_classic(model=model, epochs=epochs) #log= train_classic_higher(model=model, epochs=epochs) #### plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs)) print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Log": log} print(str(model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1]) with open("res/log/%s.json" % "{}-{} epochs".format(str(model),epochs), "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') print('-'*9) ''' #### Augmented Model #### #''' t0 = time.process_time() tf_dict = {k: TF.TF_dict[k] for k in tf_names} #tf_dict = TF.TF_dict aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device) #aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device) print(str(aug_model), 'on', device_name) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10) #### plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), param_names=tf_names) print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in (s?):", out["Time"][0], "+/-", out["Time"][1]) with open("res/log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') print('Execution Time : %.00f (s?)'%(time.process_time() - t0)) print('-'*9) #''' #### TF number tests #### ''' res_folder="res/TF_nb_tests/" epochs= 200 inner_its = [10] dataug_epoch_starts= [0] TF_nb = range(1,len(TF.TF_dict)+1) #[len(TF.TF_dict)] N_seq_TF= [1] #[1, 2, 3, 4] try: os.mkdir(res_folder) os.mkdir(res_folder+"log/") except FileExistsError: pass for n_inner_iter in inner_its: print("---Starting inner_it", n_inner_iter,"---") for dataug_epoch_start in dataug_epoch_starts: print("---Starting dataug", dataug_epoch_start,"---") for n_tf in N_seq_TF: for i in TF_nb: keys = list(TF.TF_dict.keys())[0:i] ntf_dict = {k: TF.TF_dict[k] for k in keys} aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device) print(str(aug_model), 'on', device_name) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10) #### plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)) print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1]) with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') print('-'*9) '''