""" Utilities function for training. """ import torch #import torch.optim import torchvision import higher from datasets import * from utils import * def test(model): """Evaluate a model on test data. Args: model (nn.Module): Model to test. Returns: (float, Tensor) Returns the accuracy and test loss of the model. """ device = next(model.parameters()).device model.eval() #for i, (features, labels) in enumerate(dl_test): # features,labels = features.to(device), labels.to(device) # pred = model.forward(features) # return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100 correct = 0 total = 0 loss = [] with torch.no_grad(): for features, labels in dl_test: features,labels = features.to(device), labels.to(device) outputs = model(features) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() loss.append(F.cross_entropy(outputs, labels).item()) accuracy = 100 * correct / total return accuracy, np.mean(loss) def compute_vaLoss(model, dl_it, dl): """Evaluate a model on a batch of data. Args: model (nn.Module): Model to evaluate. dl_it (Iterator): Data loader iterator. dl (DataLoader): Data loader. Returns: (Tensor) Loss on a single batch of data. """ device = next(model.parameters()).device try: xs, ys = next(dl_it) except StopIteration: #Fin epoch val dl_it = iter(dl) xs, ys = next(dl_it) xs, ys = xs.to(device), ys.to(device) model.eval() #Validation sans transfornations ! return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys) def mixed_loss(xs, ys, model, unsup_factor=1): """Evaluate a model on a batch of data. Compute a combinaison of losses: + Supervised Cross-Entropy loss from original data. + Unsupervised Cross-Entropy loss from augmented data. + KL divergence loss encouraging similarity between original and augmented prediction. If unsup_factor is equal to 0 or if there isn't data augmentation, only the supervised loss is computed. Inspired by UDA, see: https://github.com/google-research/uda/blob/master/image/main.py Args: xs (Tensor): Batch of data. ys (Tensor): Batch of labels. model (nn.Module): Augmented model (see dataug.py). unsup_factor (float): Factor by which unsupervised CE and KL div loss are multiplied. Returns: (Tensor) Mixed loss if there's data augmentation, just supervised CE loss otherwise. """ #TODO: add test to prevent augmented model error and redirect to classic loss if unsup_factor!=0 and model.is_augmenting(): # Supervised loss (classic) model.augment(mode=False) sup_logits = model(xs) model.augment(mode=True) log_sup = F.log_softmax(sup_logits, dim=1) sup_loss = F.cross_entropy(log_sup, ys) # Unsupervised loss aug_logits = model(xs) w_loss = model['data_aug'].loss_weight() #Weight loss log_aug = F.log_softmax(aug_logits, dim=1) aug_loss = (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean() #KL divergence loss (w/ logits) - Prediction/Distribution similarity kl_loss = (F.softmax(sup_logits, dim=1)*(log_sup-log_aug)).sum(dim=-1) kl_loss = (w_loss * kl_loss).mean() loss = sup_loss + unsup_factor * (aug_loss + kl_loss) else: #Supervised loss (classic) sup_logits = model(xs) log_sup = F.log_softmax(sup_logits, dim=1) loss = F.cross_entropy(log_sup, ys) return loss def train_classic(model, opt_param, epochs=1, print_freq=1): """Classic training of a model. Args: model (nn.Module): Model to train. opt_param (dict): Dictionnary containing optimizers parameters. epochs (int): Number of epochs to perform. (default: 1) print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1) Returns: (list) Logs of training. Each items is a dict containing results of an epoch. """ device = next(model.parameters()).device #opt = torch.optim.Adam(model.parameters(), lr=1e-3) optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 model.train() dl_val_it = iter(dl_val) log = [] for epoch in range(epochs): #print_torch_mem("Start epoch") t0 = time.process_time() for i, (features, labels) in enumerate(dl_train): #print_torch_mem("Start iter") features,labels = features.to(device), labels.to(device) optim.zero_grad() logits = model.forward(features) pred = F.log_softmax(logits, dim=1) loss = F.cross_entropy(pred,labels) loss.backward() optim.step() #### Tests #### tf = time.process_time() val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) accuracy, _ =test(model) model.train() #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', accuracy) #### Log #### data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": None, } log.append(data) return log def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start=0, print_freq=1, unsup_loss=1, hp_opt=False, save_sample_freq=None): """Training of an augmented model with higher. This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py). Ex : Augmented_model(Data_augV5(...), Higher_model(model)) Training loss can either be computed directly from augmented inputs (unsup_loss=0). However, it is recommended to use the mixed loss computation, which combine original and augmented inputs to compute the loss (unsup_loss>0). Args: model (nn.Module): Augmented model to train. opt_param (dict): Dictionnary containing optimizers parameters. epochs (int): Number of epochs to perform. (default: 1) inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1) dataug_epoch_start (int): Epoch when to start data augmentation. (default: 0) print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1) unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1) hp_opt (bool): Wether to learn inner optimizer parameters. (default: False) save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None) Returns: (list) Logs of training. Each items is a dict containing results of an epoch. """ device = next(model.parameters()).device log = [] dl_val_it = iter(dl_val) val_loss=None high_grad_track = True if inner_it == 0: #No HP optimization high_grad_track=False if dataug_epoch_start!=0: #Augmentation de donnee differee model.augment(mode=False) high_grad_track = False ## Optimizers ## #Inner Opt inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9 diffopt = model['model'].get_diffopt( inner_opt, grad_callback=(lambda grads: clip_norm(grads, max_norm=10)), track_higher_grads=high_grad_track) #Meta Opt hyper_param = list(model['data_aug'].parameters()) if hp_opt : for param_group in diffopt.param_groups: for param in list(opt_param['Inner'].keys())[1:]: param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_() hyper_param += [param_group[param]] meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2 model.train() meta_opt.zero_grad() for epoch in range(1, epochs+1): t0 = time.process_time() for i, (xs, ys) in enumerate(dl_train): xs, ys = xs.to(device), ys.to(device) if(unsup_loss==0): #Methode uniforme logits = model(xs) # modified `params` can also be passed as a kwarg loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards() if model._data_augmentation: #Weight loss w_loss = model['data_aug'].loss_weight()#.to(device) loss = loss * w_loss loss = loss.mean() else: #Methode mixed loss = mixed_loss(xs, ys, model, unsup_factor=unsup_loss) #print_graph(loss) #to visualize computational graph #t = time.process_time() diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) #print(len(model['model']['functional']._fast_params),"step", time.process_time()-t) if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step #print("meta") val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss() #print_graph(val_loss) #to visualize computational graph val_loss.backward() torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN meta_opt.step() #Adjust Hyper-parameters model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1 if hp_opt: for param_group in diffopt.param_groups: for param in list(opt_param['Inner'].keys())[1:]: param_group[param].data = param_group[param].data.clamp(min=1e-4) #Reset gradients diffopt.detach_() model['model'].detach_() meta_opt.zero_grad() elif not high_grad_track: diffopt.detach_() model['model'].detach_() tf = time.process_time() if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving try: viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch)) model.train() viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch)) model.eval() except: print("Couldn't save samples epoch"+epoch) pass if(not val_loss): #Compute val loss for logs val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) # Test model accuracy, test_loss =test(model) model.train() #### Log #### param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])] data={ "epoch": epoch, "train_loss": loss.item(), "val_loss": val_loss.item(), "acc": accuracy, "time": tf - t0, "param": param, } if not model['data_aug']._fixed_mix: data["mix_dist"]=model['data_aug']['mix_dist'].item() if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups] log.append(data) ############# #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', val_loss.item()) print('Accuracy :', max([x["acc"] for x in log])) print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start)) if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data) #print('proba grad',model['data_aug']['prob'].grad) if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data) #print('Mag grad',model['data_aug']['mag'].grad) if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item()) #print('Reg loss:', model['data_aug'].reg_loss().item()) if hp_opt : for param_group in diffopt.param_groups: print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item()) ############# #Augmentation de donnee differee if not model.is_augmenting() and (epoch == dataug_epoch_start): print('Starting Data Augmention...') dataug_epoch_start = epoch model.augment(mode=True) if inner_it != 0: #Rebuild diffopt if needed high_grad_track = True diffopt = model['model'].get_diffopt( inner_opt, grad_callback=(lambda grads: clip_norm(grads, max_norm=10)), track_higher_grads=high_grad_track) #Data sample saving try: viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch)) viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch)) except: print("Couldn't save finals samples") pass return log def run_simple_smartaug(model, opt_param, epochs=1, inner_it=1, print_freq=1, unsup_loss=1): """Simple training of an augmented model with higher. This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py). Ex : Augmented_model(Data_augV5(...), Higher_model(model)) Training loss can either be computed directly from augmented inputs (unsup_loss=0). However, it is recommended to use the mixed loss computation, which combine original and augmented inputs to compute the loss (unsup_loss>0). Args: model (nn.Module): Augmented model to train. opt_param (dict): Dictionnary containing optimizers parameters. epochs (int): Number of epochs to perform. (default: 1) inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1) print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1) unsup_loss (float): Proportion of the unsup_loss loss added to the supervised loss. If set to 0, the loss is only computed on augmented inputs. (default: 1) Returns: (dict) A dictionary containing a whole state of the trained network. """ device = next(model.parameters()).device ## Optimizers ## hyper_param = list(model['data_aug'].parameters()) model.start_bilevel_opt(inner_it=inner_it, hp_list=hyper_param, opt_param=opt_param, dl_val=dl_val) model.train() for epoch in range(1, epochs+1): t0 = time.process_time() for i, (xs, ys) in enumerate(dl_train): xs, ys = xs.to(device), ys.to(device) #Methode mixed loss = mixed_loss(xs, ys, model, unsup_factor=unsup_loss) model.step(loss) #(opt.zero_grad, loss.backward, opt.step) + automatic meta-optimisation tf = time.process_time() #### Print #### if(print_freq and epoch%print_freq==0): print('-'*9) print('Epoch : %d/%d'%(epoch,epochs)) print('Time : %.00f'%(tf - t0)) print('Train loss :',loss.item(), '/ val loss', model.val_loss().item()) if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data) if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data) if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item()) ############# return model['model'].state_dict()