from utils import * if __name__ == "__main__": ''' files=[ #"res/good_TF_tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json", #"res/good_TF_tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json", "res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-0.json", "res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-1.json", "res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-2.json", #"res/log/Aug_mod(RandAugUDA(18TFx2-Mag1)-LeNet)-100 epochs (dataug:0)- 0 in_it.json", ] for idx, file in enumerate(files): #legend+=str(idx)+'-'+file+'\n' with open(file) as json_file: data = json.load(json_file) plot_resV2(data['Log'], fig_name=file.replace('.json','').replace('log/',''), param_names=data['Param_names']) #plot_TF_influence(data['Log'], param_names=data['Param_names']) ''' ## Loss , Acc, Proba = f(epoch) ## #plot_compare(filenames=files, fig_name="res/compare") ''' ## Acc, Time, Epochs = f(n_tf) ## #fig_name="res/TF_nb_tests_compare" fig_name="res/TF_seq_tests_compare" inner_its = [0, 10] dataug_epoch_starts= [0] TF_nb = 14#[len(TF.TF_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)] N_seq_TF= [1, 2, 3, 4, 6] #[1] fig, ax = plt.subplots(ncols=3, figsize=(30, 8)) for in_it in inner_its: for dataug in dataug_epoch_starts: #n_tf = TF_nb #filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb] #filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, 1, dataug, in_it) for n_tf in TF_nb] n_tf = N_seq_TF #filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF] filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF] all_data=[] #legend="" for idx, file in enumerate(filenames): #legend+=str(idx)+'-'+file+'\n' with open(file) as json_file: data = json.load(json_file) all_data.append(data) acc = [x["Accuracy"] for x in all_data] epochs = [len(x["Log"]) for x in all_data] time = [x["Time"][0] for x in all_data] #for i in range(len(time)): time[i] *= epochs[i] #Estimation temps total ax[0].plot(n_tf, acc, label="{} in_it/{} dataug".format(in_it,dataug)) ax[1].plot(n_tf, time, label="{} in_it/{} dataug".format(in_it,dataug)) ax[2].plot(n_tf, epochs, label="{} in_it/{} dataug".format(in_it,dataug)) #for data in all_data: #print(np.mean([x["param"] for x in data["Log"]], axis=0)) #print(len(data["Param_names"]), np.argsort(np.argsort(np.mean([x["param"] for x in data["Log"]], axis=0)))) ax[0].set_title('Acc') ax[1].set_title('Time') ax[2].set_title('Epochs') for a in ax: a.legend() fig_name = fig_name.replace('.',',') plt.savefig(fig_name, bbox_inches='tight') plt.close() ''' #Res print #''' nb_run=3 accs = [] times = [] files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-Mag)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)] for idx, file in enumerate(files): #legend+=str(idx)+'-'+file+'\n' with open(file) as json_file: data = json.load(json_file) accs.append(data['Accuracy']) times.append(data['Time'][0]) print(idx, data['Accuracy']) print(files[0], np.mean(accs), np.std(accs), np.mean(times)) #'''