from model import * from dataug import * #from utils import * from train_utils import * tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch #Color TF (Common mag scale) #'+Contrast', #'+Color', #'+Brightness', #'+Sharpness', #'-Contrast', #'-Color', #'-Brightness', #'-Sharpness', #'=Posterize', #'=Solarize', #'BRotate', #'BTranslateX', #'BTranslateY', #'BShearX', #'BShearY', #'BadTranslateX', #'BadTranslateX_neg', #'BadTranslateY', #'BadTranslateY_neg', 'BadColor', 'BadSharpness', 'BadContrast', 'BadBrightness', #Non fonctionnel #'Auto_Contrast', #Pas opti pour des batch (Super lent) #'Equalize', ] device = torch.device('cuda') if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) ########################################## if __name__ == "__main__": n_inner_iter = 10 epochs = 100 dataug_epoch_start=0 #### Classic #### ''' model = LeNet(3,10).to(device) #model = WideResNet(num_classes=10, wrn_size=16).to(device) #model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device) #model.augment(mode=False) print(str(model), 'on', device_name) log= train_classic(model=model, epochs=epochs) #log= train_classic_higher(model=model, epochs=epochs) #### plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs)) print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Log": log} print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) with open("res/log/%s.json" % "{}-{} epochs".format(str(model),epochs), "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') print('-'*9) ''' #### Augmented Model #### #''' t0 = time.process_time() tf_dict = {k: TF.TF_dict[k] for k in tf_names} #tf_dict = TF.TF_dict aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device) #aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device) print(str(aug_model), 'on', device_name) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None) #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter) with open("res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') plot_resV2(log, fig_name="res/"+filename, param_names=tf_names) print('Execution Time : %.00f '%(time.process_time() - t0)) print('-'*9) #''' #### TF tests #### ''' res_folder="res/brutus-tests/" epochs= 150 inner_its = [1, 10] dist_mix = [0.0, 0.5, 1] dataug_epoch_starts= [0] tf_dict = {k: TF.TF_dict[k] for k in tf_names} TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)] N_seq_TF= [1, 2, 3, 4] mag_setup = [(True,True), (False, False)] #prob_setup = [True, False] nb_run= 3 try: os.mkdir(res_folder) os.mkdir(res_folder+"log/") except FileExistsError: pass for n_inner_iter in inner_its: for dataug_epoch_start in dataug_epoch_starts: for n_tf in N_seq_TF: for dist in dist_mix: #for i in TF_nb: for m_setup in mag_setup: #for p_setup in prob_setup: for run in range(nb_run): if n_inner_iter == 0 and (m_setup!=(True,True) or p_setup!=True): continue #Autres setup inutiles sans meta-opti if n_inner_iter ==1 and (n_tf==1 or n_tf==2): continue #Deja resultats #keys = list(TF.TF_dict.keys())[0:i] #ntf_dict = {k: TF.TF_dict[k] for k in keys} aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=False, fixed_mag=m_setup[0], shared_mag=m_setup[1]), LeNet(3,10)).to(device) print(str(aug_model), 'on', device_name) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=20, loss_patience=None) #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in :", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{}epochs(dataug:{})-{}in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter,run) with open(res_folder+"log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') #plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names) print('-'*9) '''