""" Dataset definition. MNIST / CIFAR10 """ import torch from torch.utils.data import SubsetRandomSampler from torch.utils.data.dataset import ConcatDataset import torchvision #Train/Validation batch size. BATCH_SIZE = 300 #Test batch size. TEST_SIZE = BATCH_SIZE #TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire ! #Wether to download data. download_data=False #Number of worker to use. num_workers=2 #4 #Pin GPU memory pin_memory=False #True :+ GPU memory / + Lent #Data storage folder dataroot="../data" #ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1] #transform_train = torchvision.transforms.Compose([ # torchvision.transforms.RandomHorizontalFlip(), # torchvision.transforms.ToTensor(), # torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10 #]) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), # torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10 ]) transform_train = torchvision.transforms.Compose([ #transforms.RandomHorizontalFlip(), #transforms.RandomVerticalFlip(), torchvision.transforms.ToTensor(), ]) #from RandAugment import RandAugment # Add RandAugment with N, M(hyperparameter) #transform_train.transforms.insert(0, RandAugment(n=2, m=30)) ### Classic Dataset ### #MNIST #data_train = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform_train) #data_val = torchvision.datasets.MNIST(dataroot, train=True, download=True, transform=transform) #data_test = torchvision.datasets.MNIST(dataroot, train=False, download=True, transform=transform) #CIFAR data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train) #data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform) data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform) #data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train) #data_val = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform) #data_test = torchvision.datasets.CIFAR100(dataroot, train=False, download=download_data, transform=transform) #SVHN #trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=download_data, transform=transform_train) #extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=download_data, transform=transform_train) #data_train = ConcatDataset([trainset, extraset]) #data_test = torchvision.datasets.SVHN(dataroot, split='test', download=download_data, transform=transform) #ImageNet #Necessite SciPy # Probleme ? : https://github.com/ildoonet/pytorch-randaugment/blob/48b8f509c4bbda93bbe733d98b3fd052b6e4c8ae/RandAugment/imagenet.py#L28 #data_train = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='train', transform=transform_train) #data_test = torchvision.datasets.ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test) #Validation set size [0, 1] #valid_size=0.1 #train_subset_indices=range(int(len(data_train)*(1-valid_size))) #val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train)) #train_subset_indices=range(BATCH_SIZE*10) #val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20) #dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory) #dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory) dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory) #Cross Validation from skorch.dataset import CVSplit cvs = CVSplit(cv=5) def next_CVSplit(): train_subset, val_subset = cvs(data_train) dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory) return dl_train, dl_val dl_train, dl_val = next_CVSplit()