from model import * from dataug import * #from utils import * from train_utils import * tf_names = [ ## Geometric TF ## 'Identity', 'FlipUD', 'FlipLR', 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast', 'Color', 'Brightness', 'Sharpness', 'Posterize', 'Solarize', #=>Image entre [0,1] #Pas opti pour des batch ] device = torch.device('cuda') if device == torch.device('cpu'): device_name = 'CPU' else: device_name = torch.cuda.get_device_name(device) ########################################## if __name__ == "__main__": n_inner_iter = 1 epochs = 150 dataug_epoch_start=0 optim_param={ 'Meta':{ 'optim':'Adam', 'lr':1e-2, #1e-2 }, 'Inner':{ 'optim': 'SGD', 'lr':1e-1, #1e-2 'momentum':0.9, #0.9 } } #model = LeNet(3,10) model = ResNet(num_classes=10) #model = MobileNetV2(num_classes=10) #model = WideResNet(num_classes=10, wrn_size=32) tf_dict = {k: TF.TF_dict[k] for k in tf_names} #### ''' t0 = time.process_time() aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None) exec_time=time.process_time() - t0 #### times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter) with open("res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') ''' #### ''' t0 = time.process_time() aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None) exec_time=time.process_time() - t0 #### times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter) with open("res/log/%s.json" % filename, "w+") as f: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') ''' res_folder="res/brutus-tests2/" epochs= 150 inner_its = [1] dist_mix = [0.0, 0.5, 0.8, 1.0] dataug_epoch_starts= [0] tf_dict = {k: TF.TF_dict[k] for k in tf_names} TF_nb = [len(tf_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)] N_seq_TF= [4, 3, 2] mag_setup = [(True,True), (False, False)] #(Fixed, Shared) #prob_setup = [True, False] nb_run= 3 try: os.mkdir(res_folder) os.mkdir(res_folder+"log/") except FileExistsError: pass for n_inner_iter in inner_its: for dataug_epoch_start in dataug_epoch_starts: for n_tf in N_seq_TF: for dist in dist_mix: #for i in TF_nb: for m_setup in mag_setup: #for p_setup in prob_setup: p_setup=False for run in range(nb_run): if (n_inner_iter == 0 and (m_setup!=(True,True) and p_setup!=True)) or (p_setup and dist!=0.0): continue #Autres setup inutiles sans meta-opti #keys = list(TF.TF_dict.keys())[0:i] #ntf_dict = {k: TF.TF_dict[k] for k in keys} t0 = time.process_time() aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=n_tf, mix_dist=dist, fixed_prob=p_setup, fixed_mag=m_setup[0], shared_mag=m_setup[1]), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) log= run_dist_dataugV3(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, opt_param=optim_param, print_freq=50, KLdiv=True, loss_patience=None) exec_time=time.process_time() - t0 #### print('-'*9) times = [x["time"] for x in log] out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) filename = "{}-{} epochs (dataug:{})- {} in_it-{}".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter, run) with open("res/log/%s.json" % filename, "w+") as f: try: json.dump(out, f, indent=True) print('Log :\"',f.name, '\" saved !') except: print("Failed to save logs :",f.name) try: plot_resV2(log, fig_name="res/"+filename, param_names=aug_model.TF_names()) except: print("Failed to plot res") print('Execution Time : %.00f '%(exec_time)) print('-'*9) #'''