import warnings warnings.filterwarnings("ignore") import os import numpy as np import tensorflow as tf import tensorflow.contrib.layers as layers import far_ho as far import far_ho.examples as far_ex tf.logging.set_verbosity(tf.logging.ERROR) import matplotlib.pyplot as plt import blue_utils as butil #Reset try: sess.close() except: pass rnd = np.random.RandomState(1) tf.reset_default_graph() sess = tf.InteractiveSession() def get_data(data_split): # load a small portion of mnist data datasets = far_ex.mnist(data_root_folder=os.path.join(os.getcwd(), 'MNIST_DATA'), partitions=data_split, reshape=False) print("Data shape : ", datasets.train.dim_data, "/ Label shape : ", datasets.train.dim_target) [print("Nb samples : ", d.num_examples) for d in datasets] return datasets.train, datasets.validation, datasets.test #Model # FC : reshape = True def g_logits(x,y, name='model'): with tf.variable_scope(name): h1 = layers.fully_connected(x, 300) logits = layers.fully_connected(h1, int(y.shape[1])) return logits #### Hyper-parametres #### n_hyper_iterations = 10 T = 10 # Number of inner iterations rev_it =10 hp_lr = 0.02 ########################## #MNIST #x = tf.placeholder(tf.float32, shape=(None, 28**2), name='x') #y = tf.placeholder(tf.float32, shape=(None, 10), name='y') #logits = g_logits(x, y) #CNN : reshape = False x = tf.placeholder(dtype=tf.float32, shape=[None,28,28,1], name='x') y = tf.placeholder(dtype=tf.float32, shape=[None,10], name='y') logits = butil.cnn(x,y) train_set, validation_set, test_set = get_data(data_split=(.1, .1,)) probX = far.get_hyperparameter('probX', initializer=0.1, constraint=lambda t: tf.maximum(tf.minimum(t, 0.1), 0.9)) probY = far.get_hyperparameter('probY', initializer=0.1, constraint=lambda t: tf.maximum(tf.minimum(t, 0.1), 0.9)) #lr = far.get_hyperparameter('lr', initializer=1e-4, constraint=lambda t: tf.maximum(tf.minimum(t, 1e-4), 1e-4)) #mu = far.get_hyperparameter('mu', initializer=0.9, constraint=lambda t: tf.maximum(tf.minimum(t, 0.9), 0.9)) #probX, probY = 0.5, 0.5 #policy = [('TranslateX', probX, 8), ('TranslateY', probY, 8)] policy = [('TranslateX', probX, 8), ('FlipUD', probY, 8)] print('Hyp :',far.utils.hyperparameters(scope=None)) #butil.viz_data(train_set, aug_policy= policy) #print('Data sampled !') #Ajout artificiel des transfo a la loss juste pour qu il soit compter dans la dynamique du graph probX_loss = tf.sigmoid(probX) probY_loss = tf.sigmoid(probY) ce = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits) L = tf.reduce_mean(probX_loss*probY_loss*ce) E = tf.reduce_mean(ce) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(logits, 1)), tf.float32)) inner_optimizer = far.AdamOptimizer() outer_optimizer = tf.train.AdamOptimizer(hp_lr) hyper_method = far.ReverseHG().truncated(reverse_iterations=rev_it) hyper_step = far.HyperOptimizer(hyper_method).minimize(E, outer_optimizer, L, inner_optimizer) train_set_supplier = train_set.create_supplier(x, y, batch_size=256, aug_policy=policy) # stochastic GD validation_set_supplier = validation_set.create_supplier(x, y) #print(train_set.dim_data,validation_set.dim_data) his_params = [] tf.global_variables_initializer().run() butil.viz_data(train_set, fig_name= 'Start_sample',aug_policy= policy) print('Data sampled !') for hyt in range(n_hyper_iterations): hyper_step(T, inner_objective_feed_dicts=train_set_supplier, outer_objective_feed_dicts=validation_set_supplier, _skip_hyper_ts=True) res = sess.run(far.hyperparameters()) + [L.eval(train_set_supplier()), E.eval(validation_set_supplier()), accuracy.eval(train_set_supplier()), accuracy.eval(validation_set_supplier())] his_params.append(res) butil.viz_data(train_set, fig_name= 'Train_sample_{}'.format(hyt),aug_policy= policy) print('Data sampled !') print('Hyper-it :',hyt,'/',n_hyper_iterations) print('inner:', L.eval(train_set_supplier())) print('outer:', E.eval(validation_set_supplier())) print('training accuracy:', res[4]) print('validation accuracy:', res[5]) print('Transformation : ProbX -',res[0],'/ProbY -',res[1]) #print('learning rate', lr.eval(), 'momentum', mu.eval(), 'l2 coefficient', rho.eval()) print('-'*50) test_set_supplier = test_set.create_supplier(x, y) print('Test accuracy:',accuracy.eval(test_set_supplier())) fig, ax = plt.subplots(ncols=4, figsize=(15, 3)) ax[0].set_title('ProbX') ax[0].plot([e[0] for e in his_params]) ax[1].set_title('ProbY') ax[1].plot([e[1] for e in his_params]) ax[2].set_title('Tr. and val. errors') ax[2].plot([e[2] for e in his_params]) ax[2].plot([e[3] for e in his_params]) ax[3].set_title('Tr. and val. acc') ax[3].plot([e[4] for e in his_params]) ax[3].plot([e[5] for e in his_params]) plt.savefig('res_cnn_aug_H{}_I{}'.format(n_hyper_iterations,T))