import torch from torch.utils.data import SubsetRandomSampler import torchvision BATCH_SIZE = 300 TEST_SIZE = 300 #TEST_SIZE = 10000 #ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1] #transform_train = torchvision.transforms.Compose([ # torchvision.transforms.RandomHorizontalFlip(), # torchvision.transforms.ToTensor(), #torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10 #]) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), #torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10 ]) ''' data_train = torchvision.datasets.MNIST( "./data", train=True, download=True, transform=torchvision.transforms.Compose([ #torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0), torchvision.transforms.ToTensor() ]) ) data_test = torchvision.datasets.MNIST( "./data", train=False, download=True, transform=torchvision.transforms.ToTensor() ) ''' data_train = torchvision.datasets.CIFAR10( "./data", train=True, download=True, transform=transform ) #data_val = torchvision.datasets.CIFAR10( # "./data", train=True, download=True, transform=transform #) data_test = torchvision.datasets.CIFAR10( "./data", train=False, download=True, transform=transform ) #''' train_subset_indices=range(int(len(data_train)/2)) #train_subset_indices=range(BATCH_SIZE*10) val_subset_indices=range(int(len(data_train)/2),len(data_train)) dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices)) dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices)) dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False)