import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import * #import kornia #import random import numpy as np import copy import transformations as TF class Data_aug(nn.Module): #Rotation parametree def __init__(self): super(Data_aug, self).__init__() self._data_augmentation = True self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.tensor(0.5)), "mag": nn.Parameter(torch.tensor(1.0)) }) #self.params["mag"].register_hook(print) def forward(self, x): if self._data_augmentation and random.random() < self._params["prob"]: #print('Aug') batch_size = x.shape[0] # create transformation (rotation) alpha = self._params["mag"]*180 # in degrees angle = torch.ones(batch_size, device=x.device) * alpha # define the rotation center center = torch.ones(batch_size, 2, device=x.device) center[..., 0] = x.shape[3] / 2 # x center[..., 1] = x.shape[2] / 2 # y #print(x.shape, center) # define the scale factor scale = torch.ones(batch_size, device=x.device) # compute the transformation matrix M = kornia.get_rotation_matrix2d(center, angle, scale) # apply the transformation to original image x = kornia.warp_affine(x, M, dsize=(x.shape[2], x.shape[3])) #dsize=(h, w) return x def eval(self): self.augment(mode=False) nn.Module.eval(self) def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): return "Data_aug(Mag-1 TF)" class Data_augV2(nn.Module): #Methode exacte def __init__(self): super(Data_augV2, self).__init__() self._data_augmentation = True self._fixed_transf=[0.0, 45.0, 180.0] #Degree rotation #self._fixed_transf=[0.0] self._nb_tf= len(self._fixed_transf) self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #Distribution prob uniforme #"prob2": nn.Parameter(torch.ones(len(self._fixed_transf)).softmax(dim=0)) }) #print(self._params["prob"], self._params["prob2"]) self.transf_idx=0 def forward(self, x): if self._data_augmentation: #print('Aug',self._fixed_transf[self.transf_idx]) device = x.device batch_size = x.shape[0] # create transformation (rotation) #alpha = 180 # in degrees alpha = self._fixed_transf[self.transf_idx] angle = torch.ones(batch_size, device=device) * alpha x = self.rotate(x,angle) return x def rotate(self, x, angle): device = x.device batch_size = x.shape[0] # define the rotation center center = torch.ones(batch_size, 2, device=device) center[..., 0] = x.shape[3] / 2 # x center[..., 1] = x.shape[2] / 2 # y #print(x.shape, center) # define the scale factor scale = torch.ones(batch_size, device=device) # compute the transformation matrix M = kornia.get_rotation_matrix2d(center, angle, scale) # apply the transformation to original image return kornia.warp_affine(x, M, dsize=(x.shape[2], x.shape[3])) #dsize=(h, w) def adjust_param(self): #Detach from gradient ? self._params['prob'].data = self._params['prob'].clamp(min=0.0,max=1.0) #print('proba',self._params['prob']) self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1 #print('Sum p', sum(self._params['prob'])) def eval(self): self.augment(mode=False) nn.Module.eval(self) def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): return "Data_augV2(Exact-%d TF)" % self._nb_tf class Data_augV3(nn.Module): #Echantillonage uniforme/Mixte def __init__(self, mix_dist=0.0): super(Data_augV3, self).__init__() self._data_augmentation = True #self._fixed_transf=[0.0, 45.0, 180.0] #Degree rotation self._fixed_transf=[0.0, 1.0, -1.0] #Flips (Identity,Horizontal,Vertical) #self._fixed_transf=[0.0] self._nb_tf= len(self._fixed_transf) self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #Distribution prob uniforme #"prob2": nn.Parameter(torch.ones(len(self._fixed_transf)).softmax(dim=0)) }) #print(self._params["prob"], self._params["prob2"]) self._sample = [] self._mix_dist = False if mix_dist != 0.0: self._mix_dist = True self._mix_factor = max(min(mix_dist, 1.0), 0.0) def forward(self, x): if self._data_augmentation: device = x.device batch_size = x.shape[0] #good_distrib = Uniform(low=torch.zeros(batch_size,1, device=device),high=torch.new_full((batch_size,1),self._params["prob"], device=device)) #bad_distrib = Uniform(low=torch.zeros(batch_size,1, device=device),high=torch.new_full((batch_size,1), 1-self._params["prob"], device=device)) #transform_dist = Categorical(probs=torch.tensor([self._params["prob"], 1-self._params["prob"]], device=device)) #self._sample = transform_dist._sample(sample_shape=torch.Size([batch_size,1])) uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=0) if not self._mix_dist: distrib = uniforme_dist else: distrib = (self._mix_factor*self._params["prob"]+(1-self._mix_factor)*uniforme_dist).softmax(dim=0) #Mix distrib reel / uniforme avec mix_factor cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*distrib) self._sample = cat_distrib.sample() TF_param = torch.tensor([self._fixed_transf[x] for x in self._sample], device=device) #Approche de marco peut-etre plus rapide #x = self.rotate(x,angle=TF_param) x = self.flip(x,flip_mat=TF_param) return x def rotate(self, x, angle): device = x.device batch_size = x.shape[0] # define the rotation center center = torch.ones(batch_size, 2, device=device) center[..., 0] = x.shape[3] / 2 # x center[..., 1] = x.shape[2] / 2 # y #print(x.shape, center) # define the scale factor scale = torch.ones(batch_size, device=device) # compute the transformation matrix M = kornia.get_rotation_matrix2d(center, angle, scale) # apply the transformation to original image return kornia.warp_affine(x, M, dsize=(x.shape[2], x.shape[3])) #dsize=(h, w) def flip(self, x, flip_mat): #print(flip_mat) device = x.device batch_size = x.shape[0] h, w = x.shape[2], x.shape[3] # destination size #points_src = torch.ones(batch_size, 4, 2, device=device) #points_dst = torch.ones(batch_size, 4, 2, device=device) #Identity iM=torch.tensor(np.eye(3)) #Horizontal flip # the source points are the region to crop corners #points_src = torch.FloatTensor([[ # [w - 1, 0], [0, 0], [0, h - 1], [w - 1, h - 1], #]]) # the destination points are the image vertexes #points_dst = torch.FloatTensor([[ # [0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1], #]]) # compute perspective transform #hM = kornia.get_perspective_transform(points_src, points_dst) hM =torch.tensor( [[[-1., 0., w-1], [ 0., 1., 0.], [ 0., 0., 1.]]]) #Vertical flip # the source points are the region to crop corners #points_src = torch.FloatTensor([[ # [0, h - 1], [w - 1, h - 1], [w - 1, 0], [0, 0], #]]) # the destination points are the image vertexes #points_dst = torch.FloatTensor([[ # [0, 0], [w - 1, 0], [w - 1, h - 1], [0, h - 1], #]]) # compute perspective transform #vM = kornia.get_perspective_transform(points_src, points_dst) vM =torch.tensor( [[[ 1., 0., 0.], [ 0., -1., h-1], [ 0., 0., 1.]]]) #print(vM) M=torch.ones(batch_size, 3, 3, device=device) for i in range(batch_size): # A optimiser if flip_mat[i]==0.0: M[i,]=iM elif flip_mat[i]==1.0: M[i,]=hM elif flip_mat[i]==-1.0: M[i,]=vM # warp the original image by the found transform return kornia.warp_perspective(x, M, dsize=(h, w)) def adjust_param(self, soft=False): #Detach from gradient ? if soft : self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible else: #self._params['prob'].clamp(min=0.0,max=1.0) self._params['prob'].data = F.relu(self._params['prob'].data) #self._params['prob'].data = self._params['prob'].clamp(min=0.0,max=1.0) #print('proba',self._params['prob']) self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1 #print('Sum p', sum(self._params['prob'])) def loss_weight(self): #w_loss = [self._params["prob"][x] for x in self._sample] #print(self._sample.view(-1,1).shape) #print(self._sample[:10]) w_loss = torch.zeros((self._sample.shape[0],self._nb_tf), device=self._sample.device) w_loss.scatter_(1, self._sample.view(-1,1), 1) #print(w_loss.shape) #print(w_loss[:10,:]) w_loss = w_loss * self._params["prob"] #print(w_loss.shape) #print(w_loss[:10,:]) w_loss = torch.sum(w_loss,dim=1) #print(w_loss.shape) #print(w_loss[:10]) return w_loss def train(self, mode=None): if mode is None : mode=self._data_augmentation self.augment(mode=mode) #Inutile si mode=None super(Data_augV3, self).train(mode) def eval(self): self.train(mode=False) #super(Augmented_model, self).eval() def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): if not self._mix_dist: return "Data_augV3(Uniform-%d TF)" % self._nb_tf else: return "Data_augV3(Mix %.1f-%d TF)" % (self._mix_factor, self._nb_tf) ''' TF_dict={ #Dataugv4 ## Geometric TF ## 'Identity' : (lambda x, mag: x), 'FlipUD' : (lambda x, mag: flipUD(x)), 'FlipLR' : (lambda x, mag: flipLR(x)), 'Rotate': (lambda x, mag: rotate(x, angle=torch.tensor([rand_int(mag, maxval=30)for _ in x], device=x.device))), 'TranslateX': (lambda x, mag: translate(x, translation=torch.tensor([[rand_int(mag, maxval=20), 0] for _ in x], device=x.device))), 'TranslateY': (lambda x, mag: translate(x, translation=torch.tensor([[0, rand_int(mag, maxval=20)] for _ in x], device=x.device))), 'ShearX': (lambda x, mag: shear(x, shear=torch.tensor([[rand_float(mag, maxval=0.3), 0] for _ in x], device=x.device))), 'ShearY': (lambda x, mag: shear(x, shear=torch.tensor([[0, rand_float(mag, maxval=0.3)] for _ in x], device=x.device))), ## Color TF (Expect image in the range of [0, 1]) ## 'Contrast': (lambda x, mag: contrast(x, contrast_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Color':(lambda x, mag: color(x, color_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Brightness':(lambda x, mag: brightness(x, brightness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Posterize': (lambda x, mag: posterize(x, bits=torch.tensor([rand_int(mag, minval=4, maxval=8) for _ in x], device=x.device))), 'Solarize': (lambda x, mag: solarize(x, thresholds=torch.tensor([rand_int(mag,minval=1, maxval=256)/256. for _ in x], device=x.device))) , #=>Image entre [0,1] #Pas opti pour des batch #Non fonctionnel #'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent) #'Equalize': (lambda mag: None), } ''' class Data_augV4(nn.Module): #Transformations avec mask def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0): super(Data_augV4, self).__init__() assert len(TF_dict)>0 self._data_augmentation = True #self._TF_matrix={} #self._input_info={'h':0, 'w':0, 'device':None} #Input associe a TF_matrix #self._mag_fct = TF_dict self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) self._nb_tf= len(self._TF) self._N_seqTF = N_TF self._fixed_mag=5 #[0, PARAMETER_MAX] self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #Distribution prob uniforme }) self._samples = [] self._mix_dist = False if mix_dist != 0.0: self._mix_dist = True self._mix_factor = max(min(mix_dist, 1.0), 0.0) def forward(self, x): if self._data_augmentation: device = x.device batch_size, h, w = x.shape[0], x.shape[2], x.shape[3] x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles) self._samples = [] for _ in range(self._N_seqTF): ## Echantillonage ## uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=1) if not self._mix_dist: self._distrib = uniforme_dist else: self._distrib = (self._mix_factor*self._params["prob"]+(1-self._mix_factor)*uniforme_dist).softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*self._distrib) sample = cat_distrib.sample() self._samples.append(sample) ## Transformations ## x = self.apply_TF(x, sample) return x ''' def compute_TF_matrix(self, magnitude=None, sample_info= None): print('Computing TF_matrix...') if not magnitude : magnitude=self._fixed_mag if sample_info: self._input_info['h']= sample_info['h'] self._input_info['w']= sample_info['w'] self._input_info['device'] = sample_info['device'] h, w, device= self._input_info['h'], self._input_info['w'], self._input_info['device'] self._TF_matrix={} for tf in self._TF : if tf=='Id': self._TF_matrix[tf]=torch.tensor([[[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]], device=device) elif tf=='Rot': center = torch.ones(1, 2, device=device) center[0, 0] = w / 2 # x center[0, 1] = h / 2 # y scale = torch.ones(1, device=device) angle = self._mag_fct[tf](magnitude) * torch.ones(1, device=device) R = kornia.get_rotation_matrix2d(center, angle, scale) #Rotation matrix (1,2,3) self._TF_matrix[tf]=torch.cat((R,torch.tensor([[[ 0., 0., 1.]]], device=device)), dim=1) #TF matrix (1,3,3) elif tf=='FlipLR': self._TF_matrix[tf]=torch.tensor([[[-1., 0., w-1], [ 0., 1., 0.], [ 0., 0., 1.]]], device=device) elif tf=='FlipUD': self._TF_matrix[tf]=torch.tensor([[[ 1., 0., 0.], [ 0., -1., h-1], [ 0., 0., 1.]]], device=device) else: raise Exception("Invalid TF requested") ''' def apply_TF(self, x, sampled_TF): device = x.device smps_x=[] masks=[] for tf_idx in range(self._nb_tf): mask = sampled_TF==tf_idx #Create selection mask smp_x = x[mask] #torch.masked_select() ? if smp_x.shape[0]!=0: #if there's data to TF magnitude=self._fixed_mag tf=self._TF[tf_idx] ''' ## Geometric TF ## if tf=='Identity': pass elif tf=='FlipLR': smp_x = TF.flipLR(smp_x) elif tf=='FlipUD': smp_x = TF.flipUD(smp_x) elif tf=='Rotate': smp_x = TF.rotate(smp_x, angle=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='TranslateX' or tf=='TranslateY': smp_x = TF.translate(smp_x, translation=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='ShearX' or tf=='ShearY' : smp_x = TF.shear(smp_x, shear=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) ## Color TF (Expect image in the range of [0, 1]) ## elif tf=='Contrast': smp_x = TF.contrast(smp_x, contrast_factor=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='Color': smp_x = TF.color(smp_x, color_factor=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='Brightness': smp_x = TF.brightness(smp_x, brightness_factor=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='Sharpness': smp_x = TF.sharpeness(smp_x, sharpness_factor=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='Posterize': smp_x = TF.posterize(smp_x, bits=torch.tensor([1 for _ in smp_x], device=device)) elif tf=='Solarize': smp_x = TF.solarize(smp_x, thresholds=torch.tensor([self._mag_fct[tf](magnitude) for _ in smp_x], device=device)) elif tf=='Equalize': smp_x = TF.equalize(smp_x) elif tf=='Auto_Contrast': smp_x = TF.auto_contrast(smp_x) else: raise Exception("Invalid TF requested : ", tf) x[mask]=smp_x # Refusionner eviter x[mask] : in place ''' x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude) # Refusionner eviter x[mask] : in place #idx= mask.nonzero() #print('-'*8) #print(idx[0], tf_idx) #print(smp_x[0,]) #x=x.view(-1,3*32*32) #x=x.scatter(dim=0, index=idx, src=smp_x.view(-1,3*32*32)) #Changement des Tensor mais pas visible sur la visualisation... #x=x.view(-1,3,32,32) #print(x[0,]) ''' if len(self._TF_matrix)==0 or self._input_info['h']!=h or self._input_info['w']!=w or self._input_info['device']!=device: #Device different:Pas necessaire de tout recalculer self.compute_TF_matrix(sample_info={'h': x.shape[2], 'w': x.shape[3], 'device': x.device}) TF_matrix = torch.zeros(batch_size, 3, 3, device=device) #All geom TF for tf_idx in range(self._nb_tf): mask = self._sample==tf_idx #Create selection mask TF_matrix[mask,]=self._TF_matrix[self._TF[tf_idx]] x=kornia.warp_perspective(x, TF_matrix, dsize=(h, w)) ''' return x def adjust_param(self, soft=False): #Detach from gradient ? if soft : self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible else: #self._params['prob'].clamp(min=0.0,max=1.0) self._params['prob'].data = F.relu(self._params['prob'].data) #self._params['prob'].data = self._params['prob'].clamp(min=0.0,max=1.0) self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1 def loss_weight(self): # 1 seule TF #self._sample = self._samples[-1] #w_loss = torch.zeros((self._sample.shape[0],self._nb_tf), device=self._sample.device) #w_loss.scatter_(dim=1, index=self._sample.view(-1,1), value=1) #w_loss = w_loss * self._params["prob"]/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss) #w_loss = torch.sum(w_loss,dim=1) #Plusieurs TF sequentielles w_loss = torch.zeros((self._samples[0].shape[0],self._nb_tf), device=self._samples[0].device) for sample in self._samples: tmp_w = torch.zeros(w_loss.size(),device=w_loss.device) tmp_w.scatter_(dim=1, index=sample.view(-1,1), value=1/self._N_seqTF) w_loss += tmp_w w_loss = w_loss * self._params["prob"]/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss) w_loss = torch.sum(w_loss,dim=1) return w_loss def train(self, mode=None): if mode is None : mode=self._data_augmentation self.augment(mode=mode) #Inutile si mode=None super(Data_augV4, self).train(mode) def eval(self): self.train(mode=False) def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): if not self._mix_dist: return "Data_augV4(Uniform-%d TF x %d)" % (self._nb_tf, self._N_seqTF) else: return "Data_augV4(Mix %.1f-%d TF x %d)" % (self._mix_factor, self._nb_tf, self._N_seqTF) class Data_augV6(nn.Module): #Optimisation sequentielle #Mauvais resultats def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=None, fixed_mag=True, shared_mag=True): super(Data_augV6, self).__init__() assert len(TF_dict)>0 self._data_augmentation = True self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) self._nb_tf= len(self._TF) self._N_seqTF = N_TF self._shared_mag = shared_mag self._fixed_mag = fixed_mag self._TF_set_size = prob_set_size if prob_set_size else self._nb_tf self._fixed_TF=[0] #Identite assert self._TF_set_size>=len(self._fixed_TF) if self._TF_set_size>self._nb_tf: print("Warning : TF sets size higher than number of TF. Reducing set size to %d"%self._nb_tf) self._TF_set_size=self._nb_tf ## Genenerate TF sets ## if self._TF_set_size==len(self._fixed_TF): print("Warning : using only fixed set of TF : ", self._fixed_TF) self._TF_sets=torch.tensor([self._fixed_TF]) else: def generate_TF_sets(n_TF, set_size, idx_prefix=[]): #Generate every combinaison (without reuse) of TF TF_sets=[] if len(idx_prefix)!=0: if set_size>2: for i in range(idx_prefix[-1]+1, n_TF): TF_sets += generate_TF_sets(n_TF=n_TF, set_size=set_size-1, idx_prefix=idx_prefix+[i]) else: #if i not in idx_prefix: TF_sets+=[torch.tensor(idx_prefix+[i]) for i in range(idx_prefix[-1]+1, n_TF)] elif set_size>1: for i in range(0, n_TF): TF_sets += generate_TF_sets(n_TF=n_TF, set_size=set_size, idx_prefix=[i]) else: TF_sets+=[torch.tensor([i]) for i in range(0, n_TF)] return TF_sets self._TF_sets=generate_TF_sets(self._nb_tf, self._TF_set_size, self._fixed_TF) ## Plan TF learning schedule ## self._TF_schedule = [list(range(len(self._TF_sets))) for _ in range(self._N_seqTF)] for n_tf in range(self._N_seqTF) : TF.random.shuffle(self._TF_schedule[n_tf]) self._current_TF_idx=0 #random.randint self._start_prob = 1/self._TF_set_size self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.tensor(self._start_prob).expand(self._nb_tf)), #Proba independantes "mag" : nn.Parameter(torch.tensor(float(TF.PARAMETER_MAX)) if self._shared_mag else torch.tensor(float(TF.PARAMETER_MAX)).expand(self._nb_tf)), #[0, PARAMETER_MAX] }) #for t in TF.TF_no_mag: self._params['mag'][self._TF.index(t)].data-=self._params['mag'][self._TF.index(t)].data #Mag inutile pour les TF ignore_mag #Distribution self._fixed_prob=fixed_prob self._samples = [] self._mix_dist = False if mix_dist != 0.0: self._mix_dist = True self._mix_factor = max(min(mix_dist, 0.999), 0.0) #Mag regularisation if not self._fixed_mag: if self._shared_mag : self._reg_tgt = torch.tensor(TF.PARAMETER_MAX, dtype=torch.float) #Encourage amplitude max else: self._reg_mask=[self._TF.index(t) for t in self._TF if t not in TF.TF_ignore_mag] self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max def forward(self, x): self._samples = [] if self._data_augmentation:# and TF.random.random() < 0.5: device = x.device batch_size, h, w = x.shape[0], x.shape[2], x.shape[3] x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles) for n_tf in range(self._N_seqTF): tf_set = self._TF_sets[self._TF_schedule[n_tf][self._current_TF_idx]].to(device) #print(n_tf, tf_set) ## Echantillonage ## uniforme_dist = torch.ones(1,len(tf_set),device=device).softmax(dim=1) if not self._mix_dist: self._distrib = uniforme_dist else: prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"] curr_prob = torch.index_select(prob, 0, tf_set) curr_prob = curr_prob /sum(curr_prob) #Contrainte sum(p)=1 self._distrib = (self._mix_factor*curr_prob+(1-self._mix_factor)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor cat_distrib= Categorical(probs=torch.ones((batch_size, len(tf_set)), device=device)*self._distrib) sample = cat_distrib.sample() self._samples.append(sample) ## Transformations ## x = self.apply_TF(x, sample) return x def apply_TF(self, x, sampled_TF): device = x.device batch_size, channels, h, w = x.shape smps_x=[] for sel_idx, tf_idx in enumerate(self._TF_sets[self._current_TF_idx]): mask = sampled_TF==sel_idx #Create selection mask smp_x = x[mask] #torch.masked_select() ? (NEcessite d'expand le mask au meme dim) if smp_x.shape[0]!=0: #if there's data to TF magnitude=self._params["mag"] if self._shared_mag else self._params["mag"][tf_idx] if self._fixed_mag: magnitude=magnitude.detach() #Fmodel tente systematiquement de tracker les gradient de tout les param tf=self._TF[tf_idx] #print(magnitude) #In place #x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude) #Out of place smp_x = self._TF_dict[tf](x=smp_x, mag=magnitude) idx= mask.nonzero() idx= idx.expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ... x=x.scatter(dim=0, index=idx, src=smp_x) return x def adjust_param(self, soft=False): #Detach from gradient ? if not self._fixed_prob: if soft : self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible else: self._params['prob'].data = F.relu(self._params['prob'].data) #self._params['prob'].data = self._params['prob'].clamp(min=0.0,max=1.0) #self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1 self._params['prob'].data[0]=self._start_prob #Fixe p identite if not self._fixed_mag: #self._params['mag'].data = self._params['mag'].data.clamp(min=0.0,max=TF.PARAMETER_MAX) #Bloque une fois au extreme self._params['mag'].data = F.relu(self._params['mag'].data) - F.relu(self._params['mag'].data - TF.PARAMETER_MAX) def loss_weight(self): #A verifier if len(self._samples)==0 : return 1 #Pas d'echantillon = pas de ponderation prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"] #Plusieurs TF sequentielles (Attention ne prend pas en compte ordre !) w_loss = torch.zeros((self._samples[0].shape[0],self._TF_set_size), device=self._samples[0].device) for n_tf in range(self._N_seqTF): tmp_w = torch.zeros(w_loss.size(),device=w_loss.device) tmp_w.scatter_(dim=1, index=self._samples[n_tf].view(-1,1), value=1/self._N_seqTF) tf_set = self._TF_sets[self._TF_schedule[n_tf][self._current_TF_idx]].to(prob.device) curr_prob = torch.index_select(prob, 0, tf_set) curr_prob = curr_prob /sum(curr_prob) #Contrainte sum(p)=1 #ATTENTION DISTRIB DIFFERENTE AVEC MIX assert not self._mix_dist w_loss += tmp_w * curr_prob /self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss) w_loss = torch.sum(w_loss,dim=1) return w_loss def reg_loss(self, reg_factor=0.005): if self._fixed_mag: # or self._fixed_prob: #Pas de regularisation si trop peu de DOF return torch.tensor(0) else: #return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean') params = self._params['mag'] if self._params['mag'].shape==torch.Size([]) else self._params['mag'][self._reg_mask] return reg_factor * F.mse_loss(params, target=self._reg_tgt.to(params.device), reduction='mean') def next_TF_set(self, idx=None): if idx: self._current_TF_idx=idx else: self._current_TF_idx+=1 if self._current_TF_idx>=len(self._TF_schedule[0]): self._current_TF_idx=0 for n_tf in range(self._N_seqTF) : TF.random.shuffle(self._TF_schedule[n_tf]) #print('-- New schedule --') def train(self, mode=None): if mode is None : mode=self._data_augmentation self.augment(mode=mode) #Inutile si mode=None super(Data_augV6, self).train(mode) def eval(self): self.train(mode=False) def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): dist_param='' if self._fixed_prob: dist_param+='Fx' mag_param='Mag' if self._fixed_mag: mag_param+= 'Fx' if self._shared_mag: mag_param+= 'Sh' if not self._mix_dist: return "Data_augV6(Uniform%s-%dTF(%d)x%d-%s)" % (dist_param, self._nb_tf, self._TF_set_size, self._N_seqTF, mag_param) else: return "Data_augV6(Mix%.1f%s-%dTF(%d)x%d-%s)" % (self._mix_factor,dist_param, self._nb_tf, self._TF_set_size, self._N_seqTF, mag_param) class RandAugUDA(nn.Module): #RandAugment from UDA (for DA during training) def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX): super(RandAugUDA, self).__init__() self._data_augmentation = True self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) self._nb_tf= len(self._TF) self._N_seqTF = N_TF self.mag=nn.Parameter(torch.tensor(float(mag))) self._params = nn.ParameterDict({ "prob": nn.Parameter(torch.tensor(0.5).unsqueeze(dim=0)), "mag" : nn.Parameter(torch.tensor(float(TF.PARAMETER_MAX))), }) self._shared_mag = True self._fixed_mag = True self._op_list =[] for tf in self._TF: for mag in range(1, int(self._params['mag']*10), 1): self._op_list+=[(tf, self._params['prob'].item(), mag/10)] self._nb_op = len(self._op_list) def forward(self, x): if self._data_augmentation:# and TF.random.random() < 0.5: device = x.device batch_size, h, w = x.shape[0], x.shape[2], x.shape[3] x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles) for _ in range(self._N_seqTF): ## Echantillonage ## == sampled_ops = np.random.choice(transforms, N) uniforme_dist = torch.ones(1, self._nb_op, device=device).softmax(dim=1) cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_op), device=device)*uniforme_dist) sample = cat_distrib.sample() ## Transformations ## x = self.apply_TF(x, sample) return x def apply_TF(self, x, sampled_TF): smps_x=[] for op_idx in range(self._nb_op): mask = sampled_TF==op_idx #Create selection mask smp_x = x[mask] #torch.masked_select() ? (Necessite d'expand le mask au meme dim) if smp_x.shape[0]!=0: #if there's data to TF if TF.random.random() < self._op_list[op_idx][1]: magnitude=self._op_list[op_idx][2] tf=self._op_list[op_idx][0] #In place x[mask]=self._TF_dict[tf](x=smp_x, mag=torch.tensor(magnitude, device=x.device)) return x def adjust_param(self, soft=False): pass #Pas de parametre a opti def loss_weight(self): return 1 #Pas d'echantillon = pas de ponderation def reg_loss(self, reg_factor=0.005): return torch.tensor(0) #Pas de regularisation def train(self, mode=None): if mode is None : mode=self._data_augmentation self.augment(mode=mode) #Inutile si mode=None super(RandAugUDA, self).train(mode) def eval(self): self.train(mode=False) def augment(self, mode=True): self._data_augmentation=mode def __getitem__(self, key): return self._params[key] def __str__(self): return "RandAugUDA(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag) ''' import higher class Augmented_model2(nn.Module): def __init__(self, data_augmenter, model): super(Augmented_model2, self).__init__() self._mods = nn.ModuleDict({ 'data_aug': data_augmenter, 'model': model, 'fmodel': None }) self.augment(mode=True) def initialize(self): self._mods['model'].initialize() def forward(self, x): if self._mods['fmodel']: return self._mods['fmodel'](self._mods['data_aug'](x)) else: return self._mods['model'](self._mods['data_aug'](x)) def functional(self, opt, track_higher_grads=True): self._mods['fmodel'] = higher.patch.monkeypatch(self._mods['model'], device=None, copy_initial_weights=True) return higher.optim.get_diff_optim(opt, self._mods['model'].parameters(), fmodel=self._mods['fmodel'], track_higher_grads=track_higher_grads) def detach_(self): tmp = self._mods['fmodel'].fast_params self._mods['fmodel']._fast_params=[] self._mods['fmodel'].update_params(tmp) for p in self._mods['fmodel'].fast_params: p.detach_().requires_grad_() def augment(self, mode=True): self._data_augmentation=mode self._mods['data_aug'].augment(mode) def train(self, mode=None): if mode is None : mode=self._data_augmentation self._mods['data_aug'].augment(mode) super(Augmented_model2, self).train(mode) return self def eval(self): return self.train(mode=False) #super(Augmented_model, self).eval() def items(self): """Return an iterable of the ModuleDict key/value pairs. """ return self._mods.items() def update(self, modules): self._mods.update(modules) def is_augmenting(self): return self._data_augmentation def TF_names(self): try: return self._mods['data_aug']._TF except: return None def __getitem__(self, key): return self._mods[key] def __str__(self): return "Aug_mod("+str(self._mods['data_aug'])+"-"+str(self._mods['model'])+")" ''' from torchvision.datasets.vision import VisionDataset from PIL import Image import augmentation_transforms import numpy as np class AugmentedDataset(VisionDataset): def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None): super(AugmentedDataset, self).__init__(root, transform=transform, target_transform=target_transform) supervised_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download, transform=transform) self.sup_data = supervised_dataset.data if not subset else supervised_dataset.data[subset[0]:subset[1]] self.sup_targets = supervised_dataset.targets if not subset else supervised_dataset.targets[subset[0]:subset[1]] assert len(self.sup_data)==len(self.sup_targets) for idx, img in enumerate(self.sup_data): self.sup_data[idx]= Image.fromarray(img) #to PIL Image self.unsup_data=[] self.unsup_targets=[] self.data= self.sup_data self.targets= self.sup_targets self.dataset_info= { 'name': 'CIFAR10', 'sup': len(self.sup_data), 'unsup': len(self.unsup_data), 'length': len(self.sup_data)+len(self.unsup_data), } self._TF = [ ## Geometric TF ## 'Rotate', 'TranslateX', 'TranslateY', 'ShearX', 'ShearY', 'Cutout', ## Color TF ## 'Contrast', 'Color', 'Brightness', 'Sharpness', #'Posterize', #'Solarize', 'Invert', 'AutoContrast', 'Equalize', ] self._op_list =[] self.prob=0.5 for tf in self._TF: for mag in range(1, 10): self._op_list+=[(tf, self.prob, mag)] self._nb_op = len(self._op_list) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image #img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def augement_data(self, aug_copy=1): policies = [] for op_1 in self._op_list: for op_2 in self._op_list: policies += [[op_1, op_2]] for idx, image in enumerate(self.sup_data): if (idx/self.dataset_info['sup'])%0.2==0: print("Augmenting data... ", idx,"/", self.dataset_info['sup']) #if idx==10000:break for _ in range(aug_copy): chosen_policy = policies[np.random.choice(len(policies))] aug_image = augmentation_transforms.apply_policy(chosen_policy, image, use_mean_std=False) #Cast en float image #aug_image = augmentation_transforms.cutout_numpy(aug_image) self.unsup_data+=[(aug_image*255.).astype(self.sup_data.dtype)]#Cast float image to uint8 self.unsup_targets+=[self.sup_targets[idx]] #self.unsup_data=(np.array(self.unsup_data)*255.).astype(self.sup_data.dtype) #Cast float image to uint8 self.unsup_data=np.array(self.unsup_data) self.data= np.concatenate((self.sup_data, self.unsup_data), axis=0) self.targets= np.concatenate((self.sup_targets, self.unsup_targets), axis=0) assert len(self.unsup_data)==len(self.unsup_targets) assert len(self.data)==len(self.targets) self.dataset_info['unsup']=len(self.unsup_data) self.dataset_info['length']=self.dataset_info['sup']+self.dataset_info['unsup'] def len_supervised(self): return self.dataset_info['sup'] def len_unsupervised(self): return self.dataset_info['unsup'] def __len__(self): return self.dataset_info['length'] def __str__(self): return "CIFAR10(Sup:{}-Unsup:{}-{}TF)".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF)) class Data_augV7(nn.Module): #Proba sequentielles """Data augmentation module with learnable parameters. Applies transformations (TF) to batch of data. Each TF is defined by a (name, probability of application, magnitude of distorsion) tuple which can be learned. For the full definiton of the TF, see transformations.py. The TF probabilities defines a distribution from which we sample the TF applied. Replace the use of TF by TF sets which are combinaisons of classic TF. Attributes: _data_augmentation (bool): Wether TF will be applied during forward pass. _TF_dict (dict) : A dictionnary containing the data transformations (TF) to be applied. _TF (list) : List of TF names. _TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). _nb_tf (int) : Number of TF used. _N_seqTF (int) : Number of TF to be applied sequentially to each inputs _shared_mag (bool) : Wether to share a single magnitude parameters for all TF. Beware using shared mag with basic color TF as their lowest magnitude is at PARAMETER_MAX/2. _fixed_mag (bool): Wether to lock the TF magnitudes. _fixed_prob (bool): Wether to lock the TF probabilies. _samples (list): Sampled TF index during last forward pass. _temp (bool): Wether we use a mix of an uniform distribution and the real distribution (TF probabilites). If False, only a uniform distribution is used. _fixed_temp (bool): Wether we lock the mix distribution factor. _params (nn.ParameterDict): Learnable parameters. _reg_tgt (Tensor): Target for the magnitude regularisation. Only used when _fixed_mag is set to false (ie. we learn the magnitudes). _reg_mask (list): Mask selecting the TF considered for the regularisation. """ def __init__(self, TF_dict, N_TF=1, temp=0.5, fixed_prob=False, fixed_mag=True, shared_mag=True, TF_ignore_mag=TF.TF_ignore_mag): """Init Data_augv7. Args: TF_dict (dict): A dictionnary containing the data transformations (TF) to be applied. (default: use all available TF from transformations.py) N_TF (int): Number of TF to be applied sequentially to each inputs. Minimum 2, otherwise prefer using Data_augV5. (default: 2) temp (float): Proportion [0.0, 1.0] of the real distribution used for sampling/selection of the TF. Distribution = (1-temp)*Uniform_distribution + temp*Real_distribution. If None is given, try to learn this parameter. (default: 0) fixed_prob (bool): Wether to lock the TF probabilies. (default: False) fixed_mag (bool): Wether to lock the TF magnitudes. (default: True) shared_mag (bool): Wether to share a single magnitude parameters for all TF. (default: True) TF_ignore_mag (set): TF for which magnitude should be ignored (either it's fixed or unused). """ super(Data_augV7, self).__init__() assert len(TF_dict)>0 assert N_TF>=0 if N_TF<2: print("WARNING: Data_augv7 isn't designed to use less than 2 sequentials TF. Please use Data_augv5 instead.") self._data_augmentation = True #TF self._TF_dict = TF_dict self._TF= list(self._TF_dict.keys()) self._TF_ignore_mag= TF_ignore_mag self._nb_tf= len(self._TF) self._N_seqTF = N_TF #Mag self._shared_mag = shared_mag self._fixed_mag = fixed_mag if not self._fixed_mag and len([tf for tf in self._TF if tf not in self._TF_ignore_mag])==0: print("WARNING: Mag would be fixed as current TF doesn't allow gradient propagation:",self._TF) self._fixed_mag=True #Distribution self._fixed_prob=fixed_prob self._samples = [] # self._temp = False # if temp != 0.0: #Mix dist # self._temp = True self._fixed_temp=True if temp is None: #Learn Temperature print("WARNING: Learning Temperature parameter isn't working with this version (No grad)") self._fixed_temp = False temp=0.5 #TF sets #import itertools #itertools.product(range(self._nb_tf), repeat=self._N_seqTF) #no_consecutive={idx for idx, t in enumerate(self._TF) if t in {'FlipUD', 'FlipLR'}} #Specific No consecutive ops no_consecutive={idx for idx, t in enumerate(self._TF) if t not in {'Identity'}} #No consecutive same ops (except Identity) cons_test = (lambda i, idxs: i in no_consecutive and len(idxs)!=0 and i==idxs[-1]) #Exclude selected consecutive def generate_TF_sets(n_TF, set_size, idx_prefix=[]): #Generate every arrangement (with reuse) of TF (exclude cons_test arrangement) TF_sets=[] if set_size>1: for i in range(n_TF): if not cons_test(i, idx_prefix): TF_sets += generate_TF_sets(n_TF, set_size=set_size-1, idx_prefix=idx_prefix+[i]) else: TF_sets+=[[idx_prefix+[i]] for i in range(n_TF) if not cons_test(i, idx_prefix)] return TF_sets self._TF_sets=torch.ByteTensor(generate_TF_sets(self._nb_tf, self._N_seqTF)).squeeze() self._nb_TF_sets=len(self._TF_sets) print("Number of TF sets:",self._nb_TF_sets) #print(self._TF_sets) self._prob_mem=torch.zeros(self._nb_TF_sets) #Params init_mag = float(TF.PARAMETER_MAX) if self._fixed_mag else float(TF.PARAMETER_MAX)/2 self._params = nn.ParameterDict({ #"prob": nn.Parameter(torch.ones(self._nb_TF_sets)/self._nb_TF_sets), #Distribution prob uniforme "prob": nn.Parameter(torch.ones(self._nb_TF_sets)), "mag" : nn.Parameter(torch.tensor(init_mag) if self._shared_mag else torch.tensor(init_mag).repeat(self._nb_tf)), #[0, PARAMETER_MAX] "temp": nn.Parameter(torch.tensor(temp))#.clamp(min=0.0,max=0.999)) }) #for tf in TF.TF_no_grad : # if tf in self._TF: self._params['mag'].data[self._TF.index(tf)]=float(TF.PARAMETER_MAX) #TF fixe a max parameter #for t in TF.TF_no_mag: self._params['mag'][self._TF.index(t)].data-=self._params['mag'][self._TF.index(t)].data #Mag inutile pour les TF ignore_mag #Mag regularisation if not self._fixed_mag: if self._shared_mag : self._reg_tgt = torch.FloatTensor(TF.PARAMETER_MAX) #Encourage amplitude max else: self._reg_mask=[idx for idx,t in enumerate(self._TF) if t not in self._TF_ignore_mag] self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max def forward(self, x): """ Main method of the Data augmentation module. Args: x (Tensor): Batch of data. Returns: Tensor : Batch of tranformed data. """ self._samples = None if self._data_augmentation:# and TF.random.random() < 0.5: device = x.device batch_size, h, w = x.shape[0], x.shape[2], x.shape[3] x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles) ## Echantillonage ## # uniforme_dist = torch.ones(1,self._nb_TF_sets,device=device).softmax(dim=1) # if not self._temp: # self._distrib = uniforme_dist # else: # prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"] # prob = F.softmax(prob, dim=0) # temp = self._params["temp"].detach() if self._fixed_temp else self._params["temp"] # self._distrib = (temp*prob+(1-temp)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_TF_sets), device=device)*self._distrib) sample = cat_distrib.sample() self._samples=sample TF_samples=self._TF_sets[sample,:].to(device) #[Batch_size, TFseq] for i in range(self._N_seqTF): ## Transformations ## x = self.apply_TF(x, TF_samples[:,i]) return x def apply_TF(self, x, sampled_TF): """ Applies the sampled transformations. Args: x (Tensor): Batch of data. sampled_TF (Tensor): Indexes of the TF to be applied to each element of data. Returns: Tensor: Batch of tranformed data. """ device = x.device batch_size, channels, h, w = x.shape smps_x=[] for tf_idx in range(self._nb_tf): mask = sampled_TF==tf_idx #Create selection mask smp_x = x[mask] #torch.masked_select() ? (Necessite d'expand le mask au meme dim) if smp_x.shape[0]!=0: #if there's data to TF magnitude=self._params["mag"] if self._shared_mag else self._params["mag"][tf_idx] if self._fixed_mag: magnitude=magnitude.detach() #Fmodel tente systematiquement de tracker les gradient de tout les param tf=self._TF[tf_idx] #In place #x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude) #Out of place smp_x = self._TF_dict[tf](x=smp_x, mag=magnitude) idx= mask.nonzero() idx= idx.expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ... x=x.scatter(dim=0, index=idx, src=smp_x) return x def adjust_param(self, soft=False): #Detach from gradient ? """ Enforce limitations to the learned parameters. Ensure that the parameters value stays in the right intevals. This should be called after each update of those parameters. Args: soft (bool): Wether to use a softmax function for TF probabilites. Not Recommended as it tends to lock the probabilities, preventing them to be learned. (default: False) """ # if not self._fixed_prob: # if soft : # self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible # else: # self._params['prob'].data = self._params['prob'].data.clamp(min=1/(self._nb_tf*100),max=1.0) # self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1 if not self._fixed_mag: self._params['mag'].data = self._params['mag'].data.clamp(min=TF.PARAMETER_MIN, max=TF.PARAMETER_MAX) if not self._fixed_temp: self._params['temp'].data = self._params['temp'].data.clamp(min=0.0, max=0.999) def loss_weight(self, batch_norm=True): """ Weights for the loss. Compute the weights for the loss of each inputs depending on wich TF was applied to them. Should be applied to the loss before reduction. Do not take into account the order of application of the TF. See Data_augV7. Args: batch_norm (bool): Wether to normalize mean of the weights. (Default: True) Returns: Tensor : Loss weights. """ if len(self._samples)==0 : return torch.tensor(1, device=self._params["prob"].device) #Pas d'echantillon = pas de ponderation prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"] # prob = F.softmax(prob, dim=0) w_loss = torch.zeros((self._samples.shape[0],self._nb_TF_sets), device=self._samples.device) w_loss.scatter_(1, self._samples.view(-1,1), 1) #Normalizing by mean, would lend an exact normalization but can lead to unstable behavior of probabilities. w_loss = w_loss * prob w_loss = torch.sum(w_loss,dim=1) if batch_norm: w_min = w_loss.min() w_loss = w_loss-w_min if w_min<0 else w_loss w_loss = w_loss/w_loss.mean() #mean(w_loss)=1 #Normalizing by distribution is a statistical approximation of the exact normalization. It lead to more smooth probabilities evolution but will only return 1 if temp=1. # w_loss = w_loss * prob/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss) # w_loss = torch.sum(w_loss,dim=1) # if mean_norm: # w_loss = w_loss * prob # w_loss = torch.sum(w_loss,dim=1) # w_loss = w_loss/w_loss.mean() #mean(w_loss)=1 # else: # w_loss = w_loss * prob/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss) # w_loss = torch.sum(w_loss,dim=1) return w_loss def reg_loss(self, reg_factor=0.005): """ Regularisation term used to learn the magnitudes. Use an L2 loss to encourage high magnitudes TF. Args: reg_factor (float): Factor by wich the regularisation loss is multiplied. (default: 0.005) Returns: Tensor containing the regularisation loss value. """ if self._fixed_mag or self._fixed_prob: #Not enough DOF return torch.tensor(0) else: #return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean') mags = self._params['mag'] if self._params['mag'].shape==torch.Size([]) else self._params['mag'][self._reg_mask] max_mag_reg = reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean') return max_mag_reg def TF_prob(self): """ Gives an estimation of the individual TF probabilities. Be warry that the probability returned isn't exact. The TF distribution isn't fully represented by those. Each probability should be taken individualy. They only represent the chance for a specific TF to be picked at least once. Returms: Tensor containing the single TF probabilities of applications. """ if torch.all(self._params['prob']!=self._prob_mem.to(self._params['prob'].device)): #Prevent recompute if originial prob didn't changed self._prob_mem=self._params['prob'].data.detach_() prob = F.softmax(self._params["prob"]*self._params["temp"], dim=0) self._single_TF_prob=torch.zeros(self._nb_tf) for idx_tf in range(self._nb_tf): for i, t_set in enumerate(self._TF_sets): #uni, count = np.unique(t_set, return_counts=True) #if idx_tf in uni: # res[idx_tf]+=self._params['prob'][i]*int(count[np.where(uni==idx_tf)]) if idx_tf in t_set: self._single_TF_prob[idx_tf]+=prob[i] return self._single_TF_prob def train(self, mode=True): """ Set the module training mode. Args: mode (bool): Wether to learn the parameter of the module. None would not change mode. (default: None) """ #if mode is None : # mode=self._data_augmentation self.augment(mode=mode) #Inutile si mode=None super(Data_augV7, self).train(mode) return self def eval(self): """ Set the module to evaluation mode. """ return self.train(mode=False) def augment(self, mode=True): """ Set the augmentation mode. Args: mode (bool): Wether to perform data augmentation on the forward pass. (default: True) """ self._data_augmentation=mode def is_augmenting(self): """ Return wether data augmentation is applied. Returns: bool : True if data augmentation is applied. """ return self._data_augmentation def __getitem__(self, key): """Access to the learnable parameters Args: key (string): Name of the learnable parameter to access. Returns: nn.Parameter. """ if key == 'prob': #Override prob access return self.TF_prob() return self._params[key] def __str__(self): """Name of the module Returns: String containing the name of the module as well as the higher levels parameters. """ dist_param='' if self._fixed_prob: dist_param+='Fx' mag_param='Mag' if self._fixed_mag: mag_param+= 'Fx' if self._shared_mag: mag_param+= 'Sh' # if not self._temp: # return "Data_augV7(Uniform%s-%dTFx%d-%s)" % (dist_param, self._nb_tf, self._N_seqTF, mag_param) if self._fixed_temp: return "Data_augV7(T%.1f%s-%dTFx%d-%s)" % (self._params['temp'].item(),dist_param, self._nb_tf, self._N_seqTF, mag_param) else: return "Data_augV7(T%s-%dTFx%d-%s)" % (dist_param, self._nb_tf, self._N_seqTF, mag_param)