import argparse #Argparse parser = argparse.ArgumentParser(description='Run smart augmentation') parser.add_argument('-dv','--device', default='cuda', dest='device', help='Device : cpu / cuda') parser.add_argument('-dt','--dtype', default='FP32', dest='dtype', help='Data type (Default: Float32)') parser.add_argument('-m','--model', default='resnet18', dest='model', help='Network') parser.add_argument('-pt','--pretrained', default='', dest='pretrained', help='Use pretrained weight if possible') parser.add_argument('-ep','--epochs', type=int, default=10, dest='epochs', help='epoch') # parser.add_argument('-ot', '--optimizer', default='SGD', dest='opt_type', # help='Model optimizer') parser.add_argument('-lr', type=float, default=1e-1, dest='lr', help='Model learning rate') parser.add_argument('-mo', '--momentum', type=float, default=0.9, dest='momentum', help='Momentum') parser.add_argument('-dc', '--decay', type=float, default=0.0005, dest='decay', help='Weight decay') parser.add_argument('-ns','--nesterov', type=bool, default=False, dest='nesterov', help='Nesterov momentum ?') parser.add_argument('-sc', '--scheduler', default='cosine', dest='scheduler', help='Model learning rate scheduler') parser.add_argument('-wu', '--warmup', type=float, default=0, dest='warmup', help='Warmup multiplier') parser.add_argument('-a','--augment', type=bool, default=False, dest='augment', help='Data augmentation ?') parser.add_argument('-N', type=int, default=1, help='Combination of TF') parser.add_argument('-K', type=int, default=0, help='Number inner iteration') parser.add_argument('-al','--augment_loss', type=int, default=1, dest='augment_loss', help='Number of augmented example for each sample in loss computation.') parser.add_argument('-t', '--temp', type=float, default=0.5, dest='temp', help='Probability distribution temperature') parser.add_argument('-tfc','--tf_config', default='../config/invScale_wide_tf_config.json', dest='tf_config', help='TF config') parser.add_argument('-ls', '--learn_seq', type=bool, default=False, dest='learn_seq', help='Learn order of application of TF (DataugV7-8) ?') parser.add_argument('-fm', '--fixed_mag', type=bool, default=False, dest='fixed_mag', help='Fixed magnitude when learning data augmentation ?') parser.add_argument('-sm', '--shared_mag', type=bool, default=False, dest='shared_mag', help='Shared magnitude when learning data augmentation ?') # parser.add_argument('-mot', '--metaoptimizer', default='Adam', dest='meta_opt_type', # help='Meta optimizer (Augmentations)') parser.add_argument('-mlr', type=float, default=1e-2, dest='mlr', help='Meta learning rate (Augmentations)') parser.add_argument('-ms', type=int, default=0, dest='meta_epoch_start', help='Epoch at which start meta learning') parser.add_argument('-mr', type=float, default=0.001, dest='mag_reg', help='Augmentation magnitudes regulation factor') parser.add_argument('-rf','--res_folder', default='../res/', dest='res_folder', help='Results folder') parser.add_argument('-pf','--postfix', default='', dest='postfix', help='Res postfix') parser.add_argument('-dr','--dataroot', default='~/scratch/data', dest='dataroot', help='Datasets folder') parser.add_argument('-ds','--dataset', default='CIFAR10', dest='dataset', help='Dataset') parser.add_argument('-bs','--batch_size', type=int, default=256, dest='batch_size', help='Batch size') #256 (WRN) / 512 parser.add_argument('-w','--workers', type=int, default=6, dest='workers', help='Numer of workers (Nb CPU cores).')