mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Resultats experience effet nbTF + outil comparaison resultat
This commit is contained in:
parent
aef002891e
commit
fd38bcbdf5
2 changed files with 51 additions and 13 deletions
Binary file not shown.
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 43 KiB |
|
@ -11,7 +11,36 @@ BATCH_SIZE = 300
|
||||||
#TEST_SIZE = 300
|
#TEST_SIZE = 300
|
||||||
TEST_SIZE = 10000
|
TEST_SIZE = 10000
|
||||||
|
|
||||||
|
tf_names = [
|
||||||
|
## Geometric TF ##
|
||||||
|
'Identity',
|
||||||
|
'FlipUD',
|
||||||
|
'FlipLR',
|
||||||
|
#'Rotate',
|
||||||
|
#'TranslateX',
|
||||||
|
#'TranslateY',
|
||||||
|
#'ShearX',
|
||||||
|
#'ShearY',
|
||||||
|
|
||||||
|
## Color TF (Expect image in the range of [0, 1]) ##
|
||||||
|
#'Contrast',
|
||||||
|
#'Color',
|
||||||
|
'Brightness',
|
||||||
|
#'Sharpness',
|
||||||
|
#'Posterize',
|
||||||
|
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||||
|
|
||||||
|
#Non fonctionnel
|
||||||
|
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
|
||||||
|
#'Equalize',
|
||||||
|
]
|
||||||
|
|
||||||
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
||||||
|
#transform_train = torchvision.transforms.Compose([
|
||||||
|
# torchvision.transforms.RandomHorizontalFlip(),
|
||||||
|
# torchvision.transforms.ToTensor(),
|
||||||
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||||
|
#])
|
||||||
transform = torchvision.transforms.Compose([
|
transform = torchvision.transforms.Compose([
|
||||||
torchvision.transforms.ToTensor(),
|
torchvision.transforms.ToTensor(),
|
||||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||||
|
@ -31,6 +60,9 @@ data_test = torchvision.datasets.MNIST(
|
||||||
data_train = torchvision.datasets.CIFAR10(
|
data_train = torchvision.datasets.CIFAR10(
|
||||||
"./data", train=True, download=True, transform=transform
|
"./data", train=True, download=True, transform=transform
|
||||||
)
|
)
|
||||||
|
#data_val = torchvision.datasets.CIFAR10(
|
||||||
|
# "./data", train=True, download=True, transform=transform
|
||||||
|
#)
|
||||||
data_test = torchvision.datasets.CIFAR10(
|
data_test = torchvision.datasets.CIFAR10(
|
||||||
"./data", train=False, download=True, transform=transform
|
"./data", train=False, download=True, transform=transform
|
||||||
)
|
)
|
||||||
|
@ -81,7 +113,7 @@ def train_classic(model, epochs=1):
|
||||||
dl_val_it = iter(dl_val)
|
dl_val_it = iter(dl_val)
|
||||||
log = []
|
log = []
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
print_torch_mem("Start epoch")
|
#print_torch_mem("Start epoch")
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
for i, (features, labels) in enumerate(dl_train):
|
for i, (features, labels) in enumerate(dl_train):
|
||||||
#print_torch_mem("Start iter")
|
#print_torch_mem("Start iter")
|
||||||
|
@ -132,8 +164,8 @@ def train_classic_higher(model, epochs=1):
|
||||||
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt):
|
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt):
|
||||||
|
|
||||||
for epoch in range(epochs):
|
for epoch in range(epochs):
|
||||||
print_torch_mem("Start epoch "+str(epoch))
|
#print_torch_mem("Start epoch "+str(epoch))
|
||||||
print("Fast param ",len(fmodel._fast_params))
|
#print("Fast param ",len(fmodel._fast_params))
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
for i, (features, labels) in enumerate(dl_train):
|
for i, (features, labels) in enumerate(dl_train):
|
||||||
#print_torch_mem("Start iter")
|
#print_torch_mem("Start iter")
|
||||||
|
@ -702,8 +734,8 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
|
||||||
##########################################
|
##########################################
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
n_inner_iter = 0
|
n_inner_iter = 10
|
||||||
epochs = 2
|
epochs = 100
|
||||||
dataug_epoch_start=0
|
dataug_epoch_start=0
|
||||||
|
|
||||||
#### Classic ####
|
#### Classic ####
|
||||||
|
@ -714,7 +746,8 @@ if __name__ == "__main__":
|
||||||
#model.augment(mode=False)
|
#model.augment(mode=False)
|
||||||
|
|
||||||
print(str(model), 'on', device_name)
|
print(str(model), 'on', device_name)
|
||||||
log= train_classic_higher(model=model, epochs=epochs)
|
log= train_classic(model=model, epochs=epochs)
|
||||||
|
#log= train_classic_higher(model=model, epochs=epochs)
|
||||||
|
|
||||||
####
|
####
|
||||||
plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs))
|
plot_res(log, fig_name="res/{}-{} epochs".format(str(model),epochs))
|
||||||
|
@ -728,11 +761,13 @@ if __name__ == "__main__":
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
'''
|
'''
|
||||||
#### Augmented Model ####
|
#### Augmented Model ####
|
||||||
'''
|
#'''
|
||||||
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
|
#tf_dict = TF.TF_dict
|
||||||
aug_model = Augmented_model(Data_augV4(TF_dict=TF.TF_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
aug_model = Augmented_model(Data_augV4(TF_dict=TF.TF_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||||
print(str(aug_model), 'on', device_name)
|
print(str(aug_model), 'on', device_name)
|
||||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||||
|
|
||||||
####
|
####
|
||||||
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||||
|
@ -744,13 +779,14 @@ if __name__ == "__main__":
|
||||||
json.dump(out, f, indent=True)
|
json.dump(out, f, indent=True)
|
||||||
print('Log :\"',f.name, '\" saved !')
|
print('Log :\"',f.name, '\" saved !')
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
'''
|
#'''
|
||||||
## TF number tests ##
|
## TF number tests ##
|
||||||
|
'''
|
||||||
res_folder="res/TF_nb_tests/"
|
res_folder="res/TF_nb_tests/"
|
||||||
epochs= 200
|
epochs= 200
|
||||||
inner_its = [0, 10]
|
inner_its = [0, 10]
|
||||||
dataug_epoch_starts= [0, -1]
|
dataug_epoch_starts= [0, -1]
|
||||||
max_TF_nb = len(TF.TF_dict)
|
TF_nb = [14] #range(1,len(TF.TF_dict)+1)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
os.mkdir(res_folder)
|
os.mkdir(res_folder)
|
||||||
|
@ -762,14 +798,14 @@ if __name__ == "__main__":
|
||||||
print("---Starting inner_it", n_inner_iter,"---")
|
print("---Starting inner_it", n_inner_iter,"---")
|
||||||
for dataug_epoch_start in dataug_epoch_starts:
|
for dataug_epoch_start in dataug_epoch_starts:
|
||||||
print("---Starting dataug", dataug_epoch_start,"---")
|
print("---Starting dataug", dataug_epoch_start,"---")
|
||||||
for i in range(1,max_TF_nb):
|
for i in TF_nb:
|
||||||
keys = list(TF.TF_dict.keys())[0:i]
|
keys = list(TF.TF_dict.keys())[0:i]
|
||||||
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
ntf_dict = {k: TF.TF_dict[k] for k in keys}
|
||||||
|
|
||||||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||||
print(str(aug_model), 'on', device_name)
|
print(str(aug_model), 'on', device_name)
|
||||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||||
|
|
||||||
####
|
####
|
||||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||||
|
@ -781,3 +817,5 @@ if __name__ == "__main__":
|
||||||
json.dump(out, f, indent=True)
|
json.dump(out, f, indent=True)
|
||||||
print('Log :\"',f.name, '\" saved !')
|
print('Log :\"',f.name, '\" saved !')
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
|
|
||||||
|
'''
|
Loading…
Add table
Add a link
Reference in a new issue