mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Test WRN Brutus
This commit is contained in:
parent
b26fbcd2a2
commit
fa5bc72616
6 changed files with 72 additions and 20 deletions
|
@ -65,21 +65,26 @@ class AugmentedDataset(VisionDataset):
|
||||||
|
|
||||||
|
|
||||||
self._TF = [
|
self._TF = [
|
||||||
'Invert',
|
## Geometric TF ##
|
||||||
'Cutout',
|
'Rotate',
|
||||||
'Sharpness',
|
|
||||||
'AutoContrast',
|
|
||||||
'Posterize',
|
|
||||||
'ShearX',
|
|
||||||
'TranslateX',
|
'TranslateX',
|
||||||
'TranslateY',
|
'TranslateY',
|
||||||
|
'ShearX',
|
||||||
'ShearY',
|
'ShearY',
|
||||||
'Rotate',
|
|
||||||
'Equalize',
|
'Cutout',
|
||||||
|
|
||||||
|
## Color TF ##
|
||||||
'Contrast',
|
'Contrast',
|
||||||
'Color',
|
'Color',
|
||||||
'Solarize',
|
'Brightness',
|
||||||
'Brightness'
|
'Sharpness',
|
||||||
|
#'Posterize',
|
||||||
|
#'Solarize',
|
||||||
|
|
||||||
|
'Invert',
|
||||||
|
'AutoContrast',
|
||||||
|
'Equalize',
|
||||||
]
|
]
|
||||||
self._op_list =[]
|
self._op_list =[]
|
||||||
self.prob=0.5
|
self.prob=0.5
|
||||||
|
@ -119,6 +124,7 @@ class AugmentedDataset(VisionDataset):
|
||||||
|
|
||||||
for idx, image in enumerate(self.sup_data):
|
for idx, image in enumerate(self.sup_data):
|
||||||
if (idx/self.dataset_info['sup'])%0.2==0: print("Augmenting data... ", idx,"/", self.dataset_info['sup'])
|
if (idx/self.dataset_info['sup'])%0.2==0: print("Augmenting data... ", idx,"/", self.dataset_info['sup'])
|
||||||
|
#if idx==10000:break
|
||||||
|
|
||||||
for _ in range(aug_copy):
|
for _ in range(aug_copy):
|
||||||
chosen_policy = policies[np.random.choice(len(policies))]
|
chosen_policy = policies[np.random.choice(len(policies))]
|
||||||
|
|
|
@ -94,6 +94,8 @@ class NetworkBlock(nn.Module):
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.layer(x)
|
return self.layer(x)
|
||||||
|
|
||||||
|
|
||||||
|
#wrn_size: 32 = WRN-28-2 ? 160 = WRN-28-10
|
||||||
class WideResNet(nn.Module):
|
class WideResNet(nn.Module):
|
||||||
#def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):
|
#def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):
|
||||||
def __init__(self, num_classes, wrn_size, depth=28, dropRate=0.0):
|
def __init__(self, num_classes, wrn_size, depth=28, dropRate=0.0):
|
||||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 447 KiB |
|
@ -33,6 +33,49 @@ else:
|
||||||
##########################################
|
##########################################
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
|
||||||
|
n_inner_iter = 1
|
||||||
|
epochs = 200
|
||||||
|
dataug_epoch_start=0
|
||||||
|
|
||||||
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
|
|
||||||
|
t0 = time.process_time()
|
||||||
|
|
||||||
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
|
print(str(aug_model), 'on', device_name)
|
||||||
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=None, loss_patience=None)
|
||||||
|
|
||||||
|
exec_time=time.process_time() - t0
|
||||||
|
####
|
||||||
|
times = [x["time"] for x in log]
|
||||||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||||
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||||
|
with open("res/log/%s.json" % filename, "w+") as f:
|
||||||
|
json.dump(out, f, indent=True)
|
||||||
|
print('Log :\"',f.name, '\" saved !')
|
||||||
|
|
||||||
|
####
|
||||||
|
t0 = time.process_time()
|
||||||
|
|
||||||
|
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
|
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
|
print(str(aug_model), 'on', device_name)
|
||||||
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=None, loss_patience=None)
|
||||||
|
|
||||||
|
exec_time=time.process_time() - t0
|
||||||
|
####
|
||||||
|
times = [x["time"] for x in log]
|
||||||
|
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||||
|
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||||
|
with open("res/log/%s.json" % filename, "w+") as f:
|
||||||
|
json.dump(out, f, indent=True)
|
||||||
|
print('Log :\"',f.name, '\" saved !')
|
||||||
|
|
||||||
|
'''
|
||||||
res_folder="res/brutus-tests/"
|
res_folder="res/brutus-tests/"
|
||||||
epochs= 150
|
epochs= 150
|
||||||
inner_its = [1]
|
inner_its = [1]
|
||||||
|
@ -81,3 +124,4 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
#plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names)
|
#plot_resV2(log, fig_name=res_folder+filename, param_names=tf_names)
|
||||||
print('-'*9)
|
print('-'*9)
|
||||||
|
'''
|
|
@ -109,12 +109,12 @@ if __name__ == "__main__":
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
|
|
||||||
data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||||
data_train_aug.augement_data(aug_copy=10)
|
data_train_aug.augement_data(aug_copy=30)
|
||||||
print(data_train_aug)
|
print(data_train_aug)
|
||||||
dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
||||||
|
|
||||||
#xs, ys = next(iter(dl_train))
|
xs, ys = next(iter(dl_train))
|
||||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||||
|
|
||||||
model = LeNet(3,10).to(device)
|
model = LeNet(3,10).to(device)
|
||||||
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
|
#model = WideResNet(num_classes=10, wrn_size=16).to(device)
|
||||||
|
@ -149,9 +149,9 @@ if __name__ == "__main__":
|
||||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
|
|
||||||
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
||||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
|
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
|
||||||
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), WideResNet(num_classes=10, wrn_size=32)).to(device)
|
||||||
print(str(aug_model), 'on', device_name)
|
print(str(aug_model), 'on', device_name)
|
||||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
|
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
|
||||||
|
|
|
@ -625,7 +625,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
|
||||||
model_copy(src=fmodel, dst=model)
|
model_copy(src=fmodel, dst=model)
|
||||||
optim_copy(dopt=diffopt, opt=inner_opt)
|
optim_copy(dopt=diffopt, opt=inner_opt)
|
||||||
|
|
||||||
if epoch>50:
|
#if epoch>50:
|
||||||
meta_opt.step()
|
meta_opt.step()
|
||||||
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
||||||
#model['data_aug'].next_TF_set()
|
#model['data_aug'].next_TF_set()
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue