mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Support taille arbitraire de sets dans Dataugv6
This commit is contained in:
parent
6f9cb2cd68
commit
f8cc38dd6b
4 changed files with 2176 additions and 2155 deletions
|
@ -709,17 +709,38 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
self._fixed_mag = fixed_mag
|
||||
|
||||
self._TF_set_size=3
|
||||
#if self._TF_set_size>self._nb_tf:
|
||||
# print("Warning : TF sets size higher than number of TF. Reducing set size to %d"%self._nb_tf)
|
||||
# self._TF_set_size=self._nb_tf
|
||||
assert self._nb_tf>=self._TF_set_size
|
||||
self._TF_sets=[]
|
||||
for i in range(1,self._nb_tf):
|
||||
for j in range(i,self._nb_tf):
|
||||
if i!=j:
|
||||
self._TF_sets+=[torch.tensor([0, i, j])]
|
||||
#print(self._TF_sets)
|
||||
#self._TF_sets=[torch.tensor([0, i, j]) for i in range(1,self._nb_tf)] #All VS Identity
|
||||
self._fixed_TF=[0]
|
||||
assert self._TF_set_size>=len(self._fixed_TF)
|
||||
|
||||
if self._TF_set_size>self._nb_tf:
|
||||
print("Warning : TF sets size higher than number of TF. Reducing set size to %d"%self._nb_tf)
|
||||
self._TF_set_size=self._nb_tf
|
||||
|
||||
## Genenerate TF sets ##
|
||||
if self._TF_set_size==len(self._fixed_TF):
|
||||
print("Warning : using only fixed set of TF : ", self._fixed_TF)
|
||||
self._TF_sets=torch.tensor([self._fixed_TF])
|
||||
else:
|
||||
def generate_TF_sets(n_TF, set_size, idx_prefix=[]):
|
||||
TF_sets=[]
|
||||
print(set_size, idx_prefix)
|
||||
if len(idx_prefix)!=0:
|
||||
if set_size>2:
|
||||
for i in range(idx_prefix[-1]+1, n_TF):
|
||||
TF_sets += generate_TF_sets(n_TF=n_TF, set_size=set_size-1, idx_prefix=idx_prefix+[i])
|
||||
else:
|
||||
#if i not in idx_prefix:
|
||||
TF_sets+=[torch.tensor(idx_prefix+[i]) for i in range(idx_prefix[-1]+1, n_TF)]
|
||||
elif set_size>1:
|
||||
for i in range(0, n_TF):
|
||||
TF_sets += generate_TF_sets(n_TF=n_TF, set_size=set_size, idx_prefix=[i])
|
||||
else:
|
||||
TF_sets+=[torch.tensor([i]) for i in range(0, n_TF)]
|
||||
return TF_sets
|
||||
|
||||
self._TF_sets=generate_TF_sets(self._nb_tf, self._TF_set_size, self._fixed_TF)
|
||||
|
||||
## Plan TF learning schedule ##
|
||||
self._TF_schedule = [list(range(len(self._TF_sets))) for _ in range(self._N_seqTF)]
|
||||
for n_tf in range(self._N_seqTF) :
|
||||
TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue