mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Rangement
This commit is contained in:
parent
f83c73ec17
commit
f507ff4741
16 changed files with 85 additions and 46 deletions
336
higher/smart_aug/train_utils.py
Executable file
336
higher/smart_aug/train_utils.py
Executable file
|
@ -0,0 +1,336 @@
|
|||
""" Utilities function for training.
|
||||
|
||||
"""
|
||||
|
||||
import torch
|
||||
#import torch.optim
|
||||
import torchvision
|
||||
import higher
|
||||
|
||||
from datasets import *
|
||||
from utils import *
|
||||
|
||||
def test(model):
|
||||
"""Evaluate a model on test data.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to test.
|
||||
|
||||
Returns:
|
||||
(float, Tensor) Returns the accuracy and test loss of the model.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
model.eval()
|
||||
|
||||
#for i, (features, labels) in enumerate(dl_test):
|
||||
# features,labels = features.to(device), labels.to(device)
|
||||
|
||||
# pred = model.forward(features)
|
||||
# return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
loss = []
|
||||
with torch.no_grad():
|
||||
for features, labels in dl_test:
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
outputs = model(features)
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
loss.append(F.cross_entropy(outputs, labels).item())
|
||||
|
||||
accuracy = 100 * correct / total
|
||||
|
||||
return accuracy, np.mean(loss)
|
||||
|
||||
def compute_vaLoss(model, dl_it, dl):
|
||||
"""Evaluate a model on a batch of data.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to evaluate.
|
||||
dl_it (Iterator): Data loader iterator.
|
||||
dl (DataLoader): Data loader.
|
||||
|
||||
Returns:
|
||||
(Tensor) Loss on a single batch of data.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
try:
|
||||
xs, ys = next(dl_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_it = iter(dl)
|
||||
xs, ys = next(dl_it)
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
model.eval() #Validation sans transfornations !
|
||||
return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys)
|
||||
|
||||
def train_classic(model, opt_param, epochs=1, print_freq=1):
|
||||
"""Classic training of a model.
|
||||
|
||||
Args:
|
||||
model (nn.Module): Model to train.
|
||||
opt_param (dict): Dictionnary containing optimizers parameters.
|
||||
epochs (int): Number of epochs to perform. (default: 1)
|
||||
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
||||
|
||||
Returns:
|
||||
(list) Logs of training. Each items is a dict containing results of an epoch.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
log = []
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch")
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
optim.zero_grad()
|
||||
logits = model.forward(features)
|
||||
pred = F.log_softmax(logits, dim=1)
|
||||
loss = F.cross_entropy(pred,labels)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
|
||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
||||
accuracy, _ =test(model)
|
||||
model.train()
|
||||
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start=0, print_freq=1, KLdiv=1, hp_opt=False, save_sample_freq=None):
|
||||
"""Training of an augmented model with higher.
|
||||
|
||||
This function is intended to be used with Augmented_model containing an Higher_model (see dataug.py).
|
||||
Ex : Augmented_model(Data_augV5(...), Higher_model(model))
|
||||
|
||||
Training loss can either be computed directly from augmented inputs (KLdiv=0).
|
||||
However, it is recommended to use the KLdiv loss computation, inspired from UDA, which combine original and augmented inputs to compute the loss (KLdiv>0).
|
||||
See : https://github.com/google-research/uda
|
||||
|
||||
Args:
|
||||
model (nn.Module): Augmented model to train.
|
||||
opt_param (dict): Dictionnary containing optimizers parameters.
|
||||
epochs (int): Number of epochs to perform. (default: 1)
|
||||
inner_it (int): Number of inner iteration before a meta-step. 0 inner iteration means there's no meta-step. (default: 1)
|
||||
dataug_epoch_start (int): Epoch when to start data augmentation. (default: 0)
|
||||
print_freq (int): Number of epoch between display of the state of training. If set to None, no display will be done. (default:1)
|
||||
KLdiv (float): Proportion of the KLdiv loss added to the supervised loss. If set to 0, the loss is classicly computed on augmented inputs. (default: 1)
|
||||
hp_opt (bool): Wether to learn inner optimizer parameters. (default: False)
|
||||
save_sample_freq (int): Number of epochs between saves of samples of data. If set to None, only one save would be done at the end of the training. (default: None)
|
||||
|
||||
Returns:
|
||||
(list) Logs of training. Each items is a dict containing results of an epoch.
|
||||
"""
|
||||
device = next(model.parameters()).device
|
||||
log = []
|
||||
dl_val_it = iter(dl_val)
|
||||
val_loss=None
|
||||
|
||||
high_grad_track = True
|
||||
if inner_it == 0: #No HP optimization
|
||||
high_grad_track=False
|
||||
if dataug_epoch_start!=0: #Augmentation de donnee differee
|
||||
model.augment(mode=False)
|
||||
high_grad_track = False
|
||||
|
||||
## Optimizers ##
|
||||
#Inner Opt
|
||||
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||
|
||||
diffopt = model['model'].get_diffopt(
|
||||
inner_opt,
|
||||
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
||||
track_higher_grads=high_grad_track)
|
||||
|
||||
#Meta Opt
|
||||
hyper_param = list(model['data_aug'].parameters())
|
||||
if hp_opt :
|
||||
for param_group in diffopt.param_groups:
|
||||
for param in list(opt_param['Inner'].keys())[1:]:
|
||||
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
|
||||
hyper_param += [param_group[param]]
|
||||
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
|
||||
|
||||
model.train()
|
||||
meta_opt.zero_grad()
|
||||
|
||||
for epoch in range(1, epochs+1):
|
||||
t0 = time.process_time()
|
||||
|
||||
for i, (xs, ys) in enumerate(dl_train):
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
if(KLdiv<=0):
|
||||
#Methode uniforme
|
||||
logits = model(xs) # modified `params` can also be passed as a kwarg
|
||||
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
|
||||
|
||||
if model._data_augmentation: #Weight loss
|
||||
w_loss = model['data_aug'].loss_weight()#.to(device)
|
||||
loss = loss * w_loss
|
||||
loss = loss.mean()
|
||||
|
||||
else:
|
||||
#Methode KL div
|
||||
# Supervised loss (classic)
|
||||
if model.is_augmenting() :
|
||||
model.augment(mode=False)
|
||||
sup_logits = model(xs)
|
||||
model.augment(mode=True)
|
||||
else:
|
||||
sup_logits = model(xs)
|
||||
log_sup=F.log_softmax(sup_logits, dim=1)
|
||||
loss = F.cross_entropy(log_sup, ys)
|
||||
|
||||
# Unsupervised loss (KLdiv)
|
||||
if model.is_augmenting() :
|
||||
aug_logits = model(xs)
|
||||
log_aug=F.log_softmax(aug_logits, dim=1)
|
||||
aug_loss=0
|
||||
w_loss = model['data_aug'].loss_weight() #Weight loss
|
||||
|
||||
#KL div w/ logits - Similarite predictions (distributions)
|
||||
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
|
||||
aug_loss = aug_loss.sum(dim=-1)
|
||||
aug_loss = (w_loss * aug_loss).mean()
|
||||
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
|
||||
|
||||
loss += aug_loss * KLdiv
|
||||
|
||||
#print_graph(loss) #to visualize computational graph
|
||||
|
||||
#t = time.process_time()
|
||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
#print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
|
||||
|
||||
|
||||
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
|
||||
#print("meta")
|
||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
||||
#print_graph(val_loss) #to visualize computational graph
|
||||
val_loss.backward()
|
||||
|
||||
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
||||
|
||||
meta_opt.step()
|
||||
|
||||
#Adjust Hyper-parameters
|
||||
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
||||
if hp_opt:
|
||||
for param_group in diffopt.param_groups:
|
||||
for param in list(opt_param['Inner'].keys())[1:]:
|
||||
param_group[param].data = param_group[param].data.clamp(min=1e-4)
|
||||
|
||||
#Reset gradients
|
||||
diffopt.detach_()
|
||||
model['model'].detach_()
|
||||
meta_opt.zero_grad()
|
||||
|
||||
tf = time.process_time()
|
||||
|
||||
if (save_sample_freq and epoch%save_sample_freq==0): #Data sample saving
|
||||
try:
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
||||
except:
|
||||
print("Couldn't save samples epoch"+epoch)
|
||||
pass
|
||||
|
||||
|
||||
if(not val_loss): #Compute val loss for logs
|
||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
||||
|
||||
# Test model
|
||||
accuracy, test_loss =test(model)
|
||||
model.train()
|
||||
|
||||
#### Log ####
|
||||
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"mix_dist": model['data_aug']['mix_dist'].item(),
|
||||
"param": param,
|
||||
}
|
||||
if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups]
|
||||
log.append(data)
|
||||
#############
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', max([x["acc"] for x in log]))
|
||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
||||
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
|
||||
#print('proba grad',model['data_aug']['prob'].grad)
|
||||
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
|
||||
#print('Mag grad',model['data_aug']['mag'].grad)
|
||||
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
|
||||
#print('Reg loss:', model['data_aug'].reg_loss().item())
|
||||
|
||||
if hp_opt :
|
||||
for param_group in diffopt.param_groups:
|
||||
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
|
||||
#############
|
||||
|
||||
#Augmentation de donnee differee
|
||||
if not model.is_augmenting() and (epoch == dataug_epoch_start):
|
||||
print('Starting Data Augmention...')
|
||||
dataug_epoch_start = epoch
|
||||
model.augment(mode=True)
|
||||
if inner_it != 0: #Rebuild diffopt if needed
|
||||
high_grad_track = True
|
||||
diffopt = model['model'].get_diffopt(
|
||||
inner_opt,
|
||||
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
||||
track_higher_grads=high_grad_track)
|
||||
|
||||
|
||||
#Data sample saving
|
||||
try:
|
||||
viz_sample_data(imgs=xs, labels=ys, fig_name='../samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='../samples/data_sample_epoch{}'.format(epoch))
|
||||
except:
|
||||
print("Couldn't save finals samples")
|
||||
pass
|
||||
|
||||
return log
|
Loading…
Add table
Add a link
Reference in a new issue