mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Rangement
This commit is contained in:
parent
f83c73ec17
commit
f507ff4741
16 changed files with 85 additions and 46 deletions
218
higher/smart_aug/test_dataug.py
Executable file
218
higher/smart_aug/test_dataug.py
Executable file
|
@ -0,0 +1,218 @@
|
|||
""" Script to run experiment on smart augmentation.
|
||||
|
||||
"""
|
||||
|
||||
from model import *
|
||||
from dataug import *
|
||||
#from utils import *
|
||||
from train_utils import *
|
||||
|
||||
# Use available TF (see transformations.py)
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
#Color TF (Common mag scale)
|
||||
#'+Contrast',
|
||||
#'+Color',
|
||||
#'+Brightness',
|
||||
#'+Sharpness',
|
||||
#'-Contrast',
|
||||
#'-Color',
|
||||
#'-Brightness',
|
||||
#'-Sharpness',
|
||||
#'=Posterize',
|
||||
#'=Solarize',
|
||||
|
||||
## Bad Tranformations ##
|
||||
# Bad Geometric TF #
|
||||
#'BShearX',
|
||||
#'BShearY',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateX-',
|
||||
#'BTranslateY',
|
||||
#'BTranslateY-',
|
||||
|
||||
#'BadContrast',
|
||||
#'BadBrightness',
|
||||
|
||||
#'Random',
|
||||
#'RandBlend'
|
||||
|
||||
#Non fonctionnel
|
||||
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
|
||||
#'Equalize',
|
||||
]
|
||||
|
||||
|
||||
device = torch.device('cuda') #Select device to use
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
device_name = 'CPU'
|
||||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
#Task to perform
|
||||
tasks={
|
||||
#'classic',
|
||||
#'aug_dataset', #Moved to old code
|
||||
'aug_model'
|
||||
}
|
||||
#Parameters
|
||||
n_inner_iter = 1
|
||||
epochs = 200
|
||||
dataug_epoch_start=0
|
||||
optim_param={
|
||||
'Meta':{
|
||||
'optim':'Adam',
|
||||
'lr':1e-2, #1e-2
|
||||
},
|
||||
'Inner':{
|
||||
'optim': 'SGD',
|
||||
'lr':1e-2, #1e-2
|
||||
'momentum':0.9, #0.9
|
||||
}
|
||||
}
|
||||
|
||||
#Models
|
||||
model = LeNet(3,10)
|
||||
#model = ResNet(num_classes=10)
|
||||
#Lents
|
||||
#model = MobileNetV2(num_classes=10)
|
||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||
|
||||
#### Classic ####
|
||||
if 'classic' in tasks:
|
||||
t0 = time.process_time()
|
||||
model = model.to(device)
|
||||
|
||||
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1)
|
||||
#log= train_classic_higher(model=model, epochs=epochs)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Log": log}
|
||||
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs".format(str(model),epochs)
|
||||
with open("../res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
|
||||
plot_res(log, fig_name="../res/"+filename)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
|
||||
|
||||
#### Augmented Dataset ####
|
||||
'''
|
||||
if 'aug_dataset' in tasks:
|
||||
|
||||
t0 = time.process_time()
|
||||
|
||||
#data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
#data_train_aug.augement_data(aug_copy=30)
|
||||
#print(data_train_aug)
|
||||
#dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
||||
|
||||
#xs, ys = next(iter(dl_train))
|
||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
|
||||
#model = model.to(device)
|
||||
|
||||
#print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
#log= train_classic(model=model, epochs=epochs, print_freq=10)
|
||||
##log= train_classic_higher(model=model, epochs=epochs)
|
||||
|
||||
data_train_aug = AugmentedDatasetV2("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
data_train_aug.augement_data(aug_copy=1)
|
||||
print(data_train_aug)
|
||||
unsup_ratio = 5
|
||||
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
unsup_xs, sup_xs, ys = next(iter(dl_unsup))
|
||||
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
viz_sample_data(imgs=unsup_xs, labels=ys, fig_name='samples/data_sample_{}_unsup'.format(str(data_train_aug)))
|
||||
|
||||
model = model.to(device)
|
||||
|
||||
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
log= train_UDA(model=model, dl_unsup=dl_unsup, epochs=epochs, opt_param=optim_param, print_freq=10)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param['Inner'], "Device": device_name, "Param_names": data_train_aug._TF, "Log": log}
|
||||
print(str(model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{}-{} epochs".format(str(data_train_aug),str(model),epochs)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
|
||||
plot_res(log, fig_name="res/"+filename)
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
||||
'''
|
||||
|
||||
#### Augmented Model ####
|
||||
if 'aug_model' in tasks:
|
||||
t0 = time.process_time()
|
||||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
model = Higher_model(model) #run_dist_dataugV3
|
||||
aug_model = Augmented_model(Data_augV7(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
log= run_dist_dataugV3(model=aug_model,
|
||||
epochs=epochs,
|
||||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=20,
|
||||
KLdiv=True,
|
||||
hp_opt=False)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])
|
||||
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
|
||||
with open("res/log/%s.json" % filename, "w+") as f:
|
||||
try:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
except:
|
||||
print("Failed to save logs :",f.name)
|
||||
try:
|
||||
plot_resV2(log, fig_name="res/"+filename, param_names=aug_model.TF_names())
|
||||
except:
|
||||
print("Failed to plot res")
|
||||
|
||||
print('Execution Time : %.00f '%(exec_time))
|
||||
print('-'*9)
|
Loading…
Add table
Add a link
Reference in a new issue