Modification test pour simplifier early stopping

This commit is contained in:
Harle, Antoine (Contracteur) 2019-11-13 13:38:00 -05:00
parent 198fb06065
commit f0c0559e73
4 changed files with 49 additions and 29 deletions

View file

@ -3,8 +3,8 @@ from torch.utils.data import SubsetRandomSampler
import torchvision
BATCH_SIZE = 300
TEST_SIZE = 300
#TEST_SIZE = 10000
#TEST_SIZE = 300
TEST_SIZE = 10000
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
#transform_train = torchvision.transforms.Compose([

View file

@ -553,9 +553,10 @@ class Augmented_model(nn.Module):
mode=self._data_augmentation
self._mods['data_aug'].augment(mode)
super(Augmented_model, self).train(mode)
return self
def eval(self):
self.train(mode=False)
return self.train(mode=False)
#super(Augmented_model, self).eval()
def items(self):

View file

@ -65,6 +65,7 @@ if __name__ == "__main__":
'''
#### Augmented Model ####
#'''
t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
@ -77,10 +78,12 @@ if __name__ == "__main__":
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
print(str(aug_model),": acc", out["Accuracy"], "in (s ?):", out["Time"][0], "+/-", out["Time"][1])
with open("res/log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
print('Execution Time : %.00f (s ?)'%(time.process_time() - t0))
print('-'*9)
#'''
#### TF number tests ####

View file

@ -9,26 +9,43 @@ from utils import *
def test(model):
device = next(model.parameters()).device
model.eval()
for i, (features, labels) in enumerate(dl_test):
features,labels = features.to(device), labels.to(device)
pred = model.forward(features)
return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100
#for i, (features, labels) in enumerate(dl_test):
# features,labels = features.to(device), labels.to(device)
def compute_loss(model, dl_it, dl):
# pred = model.forward(features)
# return pred.argmax(dim=1).eq(labels).sum().item() / dl_test.batch_size * 100
correct = 0
total = 0
loss = []
with torch.no_grad():
for features, labels in dl_test:
features,labels = features.to(device), labels.to(device)
outputs = model(features)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss.append(F.cross_entropy(outputs, labels).item())
accuracy = 100 * correct / total
return accuracy, np.mean(loss)
def compute_vaLoss(model, dl_it, dl):
device = next(model.parameters()).device
try:
xs_val, ys_val = next(dl_it)
xs, ys = next(dl_it)
except StopIteration: #Fin epoch val
dl_val_it = iter(dl)
xs_val, ys_val = next(dl_it)
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
dl_it = iter(dl)
xs, ys = next(dl_it)
xs, ys = xs.to(device), ys.to(device)
try:
model.augment(mode=False) #Validation sans transfornations !
except:
pass
return F.cross_entropy(model(xs_val), ys_val)
model.eval() #Validation sans transfornations !
return F.cross_entropy(model(xs), ys)
def train_classic(model, epochs=1):
device = next(model.parameters()).device
@ -61,7 +78,7 @@ def train_classic(model, epochs=1):
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy=test(model)
accuracy, _ =test(model)
model.train()
#### Log ####
data={
@ -120,7 +137,7 @@ def train_classic_higher(model, epochs=1):
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy=test(model)
accuracy, _ =test(model)
model.train()
#### Log ####
data={
@ -256,7 +273,7 @@ def train_classic_tests(model, epochs=1):
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
accuracy=test(model)
accuracy, _ =test(model)
model.train()
#### Log ####
data={
@ -309,7 +326,7 @@ def run_simple_dataug(inner_it, epochs=1):
dl_train_it = iter(dl_train)
xs, ys = next(dl_train_it)
accuracy=test(aug_model)
accuracy, _ =test(model)
aug_model.train()
#### Print ####
@ -426,7 +443,7 @@ def run_dist_dataug(model, epochs=1, inner_it=1, dataug_epoch_start=0):
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
#viz_sample_data(imgs=aug_model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
accuracy=test(model)
accuracy, _ =test(model)
model.train()
#### Print ####
@ -522,7 +539,6 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
countcopy=0
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
dl_val_it = iter(dl_val)
dl_test_it = iter(dl_test) #ATTENTION A UTILISER SEULEMT POUR EARLY STOP
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-2)
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9)
@ -589,7 +605,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
if(high_grad_track and i%inner_it==0): #Perform Meta step
#print("meta")
#Peu utile si high_grad_track = False
val_loss = compute_loss(model=fmodel, dl_it=dl_val_it, dl=dl_val)
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val)
#print_graph(val_loss)
@ -614,20 +630,20 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
countcopy+=1
model_copy(src=fmodel, dst=model)
optim_copy(dopt=diffopt, opt=inner_opt)
val_loss = compute_loss(model=fmodel, dl_it=dl_val_it, dl=dl_val)
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val)
#Necessaire pour reset higher (Accumule les fast_param meme avec track_higher_grads = False)
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
accuracy=test(model)
accuracy, test_loss =test(model)
model.train()
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f ms'%(tf - t0))
print('Time : %.00f s'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', accuracy)
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
@ -648,7 +664,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
#############
if val_loss_monitor :
model.eval()
val_loss_monitor.register(compute_loss(model, dl_it=dl_test_it, dl=dl_test))#val_loss.item())
val_loss_monitor.register(test_loss)#val_loss.item())
if val_loss_monitor.end_training(): break #Stop training
model.train()