mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Tests consomation memoire/temps + methode KL divergence (UDA)
This commit is contained in:
parent
b60610d9a7
commit
d68034eec1
5 changed files with 214 additions and 37 deletions
177
higher/model.py
177
higher/model.py
|
@ -4,9 +4,9 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
|
||||
## Basic CNN ##
|
||||
class LeNet(nn.Module):
|
||||
class LeNet_F(nn.Module):
|
||||
def __init__(self, num_inp, num_out):
|
||||
super(LeNet, self).__init__()
|
||||
super(LeNet_F, self).__init__()
|
||||
self._params = nn.ParameterDict({
|
||||
'w1': nn.Parameter(torch.zeros(20, num_inp, 5, 5)),
|
||||
'b1': nn.Parameter(torch.zeros(20)),
|
||||
|
@ -52,6 +52,178 @@ class LeNet(nn.Module):
|
|||
def __str__(self):
|
||||
return "LeNet"
|
||||
|
||||
class LeNet(nn.Module):
|
||||
def __init__(self, num_inp, num_out):
|
||||
super(LeNet, self).__init__()
|
||||
self.conv1 = nn.Conv2d(num_inp, 20, 5)
|
||||
self.pool = nn.MaxPool2d(2, 2)
|
||||
self.conv2 = nn.Conv2d(20, 50, 5)
|
||||
self.pool2 = nn.MaxPool2d(2, 2)
|
||||
self.fc1 = nn.Linear(5*5*50, 500)
|
||||
self.fc2 = nn.Linear(500, num_out)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool2(F.relu(self.conv2(x)))
|
||||
x = x.view(x.size(0), -1)
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
def __str__(self):
|
||||
return "LeNet"
|
||||
|
||||
## MobileNetv2 ##
|
||||
|
||||
def _make_divisible(v, divisor, min_value=None):
|
||||
"""
|
||||
This function is taken from the original tf repo.
|
||||
It ensures that all layers have a channel number that is divisible by 8
|
||||
It can be seen here:
|
||||
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||||
:param v:
|
||||
:param divisor:
|
||||
:param min_value:
|
||||
:return:
|
||||
"""
|
||||
if min_value is None:
|
||||
min_value = divisor
|
||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||||
# Make sure that round down does not go down by more than 10%.
|
||||
if new_v < 0.9 * v:
|
||||
new_v += divisor
|
||||
return new_v
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Sequential):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
padding = (kernel_size - 1) // 2
|
||||
super(ConvBNReLU, self).__init__(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
||||
nn.BatchNorm2d(out_planes),
|
||||
nn.ReLU6(inplace=True)
|
||||
)
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
])
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(self,
|
||||
num_classes=1000,
|
||||
width_mult=1.0,
|
||||
inverted_residual_setting=None,
|
||||
round_nearest=8,
|
||||
block=None):
|
||||
"""
|
||||
MobileNet V2 main class
|
||||
Args:
|
||||
num_classes (int): Number of classes
|
||||
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
||||
inverted_residual_setting: Network structure
|
||||
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
||||
Set to 1 to turn off rounding
|
||||
block: Module specifying inverted residual building block for mobilenet
|
||||
"""
|
||||
super(MobileNetV2, self).__init__()
|
||||
|
||||
if block is None:
|
||||
block = InvertedResidual
|
||||
input_channel = 32
|
||||
last_channel = 1280
|
||||
|
||||
if inverted_residual_setting is None:
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# only check the first element, assuming user knows t,c,n,s are required
|
||||
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
||||
raise ValueError("inverted_residual_setting should be non-empty "
|
||||
"or a 4-element list, got {}".format(inverted_residual_setting))
|
||||
|
||||
# building first layer
|
||||
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
||||
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
output_channel = _make_divisible(c * width_mult, round_nearest)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(0.2),
|
||||
nn.Linear(self.last_channel, num_classes),
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.zeros_(m.bias)
|
||||
|
||||
def _forward_impl(self, x):
|
||||
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
||||
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
||||
x = self.features(x)
|
||||
x = x.mean([2, 3])
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
return self._forward_impl(x)
|
||||
|
||||
def __str__(self):
|
||||
return "MobileNetV2"
|
||||
|
||||
## Wide ResNet ##
|
||||
#https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
|
||||
#https://github.com/arcelien/pba/blob/master/pba/wrn.py
|
||||
|
@ -95,7 +267,6 @@ class NetworkBlock(nn.Module):
|
|||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
|
||||
#wrn_size: 32 = WRN-28-2 ? 160 = WRN-28-10
|
||||
class WideResNet(nn.Module):
|
||||
#def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue