mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Fix etat Train/Eval pour augmentation differee (Retester !)
This commit is contained in:
parent
2d6d2f7397
commit
d21a6bbf5c
4 changed files with 38 additions and 29 deletions
|
@ -7,31 +7,31 @@ TEST_SIZE = 300
|
||||||
#TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire !
|
#TEST_SIZE = 10000 #legerement +Rapide / + Consomation memoire !
|
||||||
|
|
||||||
download_data=False
|
download_data=False
|
||||||
num_workers=4 #4
|
num_workers=2 #4
|
||||||
pin_memory=False #True :+ GPU memory / + Lent
|
pin_memory=False #True :+ GPU memory / + Lent
|
||||||
|
|
||||||
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
||||||
#transform_train = torchvision.transforms.Compose([
|
#transform_train = torchvision.transforms.Compose([
|
||||||
# torchvision.transforms.RandomHorizontalFlip(),
|
# torchvision.transforms.RandomHorizontalFlip(),
|
||||||
# torchvision.transforms.ToTensor(),
|
# torchvision.transforms.ToTensor(),
|
||||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||||
#])
|
#])
|
||||||
transform = torchvision.transforms.Compose([
|
transform = torchvision.transforms.Compose([
|
||||||
torchvision.transforms.ToTensor(),
|
torchvision.transforms.ToTensor(),
|
||||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||||
])
|
])
|
||||||
'''
|
|
||||||
data_train = torchvision.datasets.MNIST(
|
#data_train = torchvision.datasets.MNIST(
|
||||||
"./data", train=True, download=True,
|
# "./data", train=True, download=True,
|
||||||
transform=torchvision.transforms.Compose([
|
# transform=torchvision.transforms.Compose([
|
||||||
#torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
# #torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
||||||
torchvision.transforms.ToTensor()
|
# torchvision.transforms.ToTensor()
|
||||||
])
|
# ])
|
||||||
)
|
#)
|
||||||
data_test = torchvision.datasets.MNIST(
|
data_test = torchvision.datasets.MNIST(
|
||||||
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
||||||
)
|
)
|
||||||
'''
|
|
||||||
|
|
||||||
from torchvision.datasets.vision import VisionDataset
|
from torchvision.datasets.vision import VisionDataset
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
|
@ -747,21 +747,22 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
max_mag_reg = reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean')
|
max_mag_reg = reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean')
|
||||||
return max_mag_reg
|
return max_mag_reg
|
||||||
|
|
||||||
def train(self, mode=None):
|
def train(self, mode=True):
|
||||||
""" Set the module training mode.
|
""" Set the module training mode.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
mode (bool): Wether to learn the parameter of the module. None would not change mode. (default: None)
|
mode (bool): Wether to learn the parameter of the module. None would not change mode. (default: None)
|
||||||
"""
|
"""
|
||||||
if mode is None :
|
#if mode is None :
|
||||||
mode=self._data_augmentation
|
# mode=self._data_augmentation
|
||||||
self.augment(mode=mode) #Inutile si mode=None
|
self.augment(mode=mode) #Inutile si mode=None
|
||||||
super(Data_augV5, self).train(mode)
|
super(Data_augV5, self).train(mode)
|
||||||
|
return self
|
||||||
|
|
||||||
def eval(self):
|
def eval(self):
|
||||||
""" Set the module to evaluation mode.
|
""" Set the module to evaluation mode.
|
||||||
"""
|
"""
|
||||||
self.train(mode=False)
|
return self.train(mode=False)
|
||||||
|
|
||||||
def augment(self, mode=True):
|
def augment(self, mode=True):
|
||||||
""" Set the augmentation mode.
|
""" Set the augmentation mode.
|
||||||
|
@ -1266,7 +1267,7 @@ class Augmented_model(nn.Module):
|
||||||
|
|
||||||
Attributes:
|
Attributes:
|
||||||
_mods (nn.ModuleDict): A dictionary containing the modules.
|
_mods (nn.ModuleDict): A dictionary containing the modules.
|
||||||
_data_augmentation (bool): Wether data augmentation is used.
|
_data_augmentation (bool): Wether data augmentation should be used.
|
||||||
"""
|
"""
|
||||||
def __init__(self, data_augmenter, model):
|
def __init__(self, data_augmenter, model):
|
||||||
"""Init Augmented Model.
|
"""Init Augmented Model.
|
||||||
|
@ -1308,22 +1309,25 @@ class Augmented_model(nn.Module):
|
||||||
self._data_augmentation=mode
|
self._data_augmentation=mode
|
||||||
self._mods['data_aug'].augment(mode)
|
self._mods['data_aug'].augment(mode)
|
||||||
|
|
||||||
def train(self, mode=None):
|
def train(self, mode=True):
|
||||||
""" Set the module training mode.
|
""" Set the module training mode.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
mode (bool): Wether to learn the parameter of the module. None would not change mode. (default: None)
|
mode (bool): Wether to learn the parameter of the module. (default: None)
|
||||||
"""
|
"""
|
||||||
if mode is None :
|
#if mode is None :
|
||||||
mode=self._data_augmentation
|
# mode=self._data_augmentation
|
||||||
self._mods['data_aug'].augment(mode)
|
|
||||||
super(Augmented_model, self).train(mode)
|
super(Augmented_model, self).train(mode)
|
||||||
|
self._mods['data_aug'].augment(mode=self._data_augmentation) #Restart if needed data augmentation
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def eval(self):
|
def eval(self):
|
||||||
""" Set the module to evaluation mode.
|
""" Set the module to evaluation mode.
|
||||||
"""
|
"""
|
||||||
return self.train(mode=False)
|
#return self.train(mode=False)
|
||||||
|
super(Augmented_model, self).train(mode=False)
|
||||||
|
self._mods['data_aug'].augment(mode=False)
|
||||||
|
return self
|
||||||
|
|
||||||
def items(self):
|
def items(self):
|
||||||
"""Return an iterable of the ModuleDict key/value pairs.
|
"""Return an iterable of the ModuleDict key/value pairs.
|
||||||
|
|
|
@ -68,7 +68,7 @@ if __name__ == "__main__":
|
||||||
}
|
}
|
||||||
n_inner_iter = 1
|
n_inner_iter = 1
|
||||||
epochs = 150
|
epochs = 150
|
||||||
dataug_epoch_start=0
|
dataug_epoch_start=10
|
||||||
optim_param={
|
optim_param={
|
||||||
'Meta':{
|
'Meta':{
|
||||||
'optim':'Adam',
|
'optim':'Adam',
|
||||||
|
@ -87,8 +87,6 @@ if __name__ == "__main__":
|
||||||
#model = MobileNetV2(num_classes=10)
|
#model = MobileNetV2(num_classes=10)
|
||||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||||
|
|
||||||
model = Higher_model(model) #run_dist_dataugV3
|
|
||||||
|
|
||||||
#### Classic ####
|
#### Classic ####
|
||||||
if 'classic' in tasks:
|
if 'classic' in tasks:
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
|
@ -171,6 +169,7 @@ if __name__ == "__main__":
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
|
|
||||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
|
model = Higher_model(model) #run_dist_dataugV3
|
||||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||||
|
|
||||||
|
|
|
@ -827,6 +827,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
device = next(model.parameters()).device
|
device = next(model.parameters()).device
|
||||||
log = []
|
log = []
|
||||||
dl_val_it = iter(dl_val)
|
dl_val_it = iter(dl_val)
|
||||||
|
val_loss=None
|
||||||
|
|
||||||
high_grad_track = True
|
high_grad_track = True
|
||||||
if inner_it == 0: #No HP optimization
|
if inner_it == 0: #No HP optimization
|
||||||
|
@ -909,10 +910,8 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
|
|
||||||
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
|
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
|
||||||
#print("meta")
|
#print("meta")
|
||||||
|
|
||||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
||||||
#print_graph(val_loss) #to visualize computational graph
|
#print_graph(val_loss) #to visualize computational graph
|
||||||
|
|
||||||
val_loss.backward()
|
val_loss.backward()
|
||||||
|
|
||||||
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
||||||
|
@ -920,7 +919,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
meta_opt.step()
|
meta_opt.step()
|
||||||
|
|
||||||
#Adjust Hyper-parameters
|
#Adjust Hyper-parameters
|
||||||
model['data_aug'].adjust_param(soft=True) #Contrainte sum(proba)=1
|
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
||||||
if hp_opt:
|
if hp_opt:
|
||||||
for param_group in diffopt.param_groups:
|
for param_group in diffopt.param_groups:
|
||||||
for param in list(opt_param['Inner'].keys())[1:]:
|
for param in list(opt_param['Inner'].keys())[1:]:
|
||||||
|
@ -949,6 +948,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
accuracy, test_loss =test(model)
|
accuracy, test_loss =test(model)
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
|
print(model['data_aug']._data_augmentation)
|
||||||
#### Log ####
|
#### Log ####
|
||||||
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
||||||
data={
|
data={
|
||||||
|
@ -989,7 +989,13 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
print('Starting Data Augmention...')
|
print('Starting Data Augmention...')
|
||||||
dataug_epoch_start = epoch
|
dataug_epoch_start = epoch
|
||||||
model.augment(mode=True)
|
model.augment(mode=True)
|
||||||
if inner_it != 0: high_grad_track = True
|
if inner_it != 0: #Rebuild diffopt if needed
|
||||||
|
high_grad_track = True
|
||||||
|
diffopt = model['model'].get_diffopt(
|
||||||
|
inner_opt,
|
||||||
|
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
|
||||||
|
track_higher_grads=high_grad_track)
|
||||||
|
|
||||||
|
|
||||||
#Data sample saving
|
#Data sample saving
|
||||||
try:
|
try:
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue