mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
minor changes
This commit is contained in:
parent
bf29d4fb6d
commit
cd6e159b77
6 changed files with 59 additions and 95 deletions
|
@ -27,25 +27,26 @@ pin_memory=False #True :+ GPU memory / + Lent
|
|||
#])
|
||||
transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.ToTensor(),
|
||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
])
|
||||
|
||||
#data_train = torchvision.datasets.MNIST(
|
||||
# "./data", train=True, download=True,
|
||||
# transform=torchvision.transforms.Compose([
|
||||
# #torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
||||
# torchvision.transforms.ToTensor()
|
||||
# ])
|
||||
#)
|
||||
#data_test = torchvision.datasets.MNIST(
|
||||
# "./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
||||
#)
|
||||
from RandAugment import RandAugment
|
||||
# Add RandAugment with N, M(hyperparameter)
|
||||
transform_train = torchvision.transforms.Compose([
|
||||
#transforms.RandomHorizontalFlip(),
|
||||
#transforms.RandomVerticalFlip(),
|
||||
torchvision.transforms.ToTensor(),
|
||||
])
|
||||
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
|
||||
|
||||
### Classic Dataset ###
|
||||
#Training data
|
||||
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
||||
#data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
||||
#Testing data
|
||||
#MNIST
|
||||
#data_train = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform_train)
|
||||
#data_val = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform)
|
||||
#data_test = torchvision.datasets.MNIST("../data", train=False, download=True, transform=transform)
|
||||
#CIFAR
|
||||
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform_train)
|
||||
data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10("../data", train=False, download=download_data, transform=transform)
|
||||
|
||||
train_subset_indices=range(int(len(data_train)/2))
|
||||
|
@ -54,5 +55,5 @@ val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
|||
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
|
||||
|
||||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(data_val, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue