minor changes

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-31 10:34:44 -05:00
parent bf29d4fb6d
commit cd6e159b77
6 changed files with 59 additions and 95 deletions

View file

@ -27,25 +27,26 @@ pin_memory=False #True :+ GPU memory / + Lent
#])
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
# torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
])
#data_train = torchvision.datasets.MNIST(
# "./data", train=True, download=True,
# transform=torchvision.transforms.Compose([
# #torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
# torchvision.transforms.ToTensor()
# ])
#)
#data_test = torchvision.datasets.MNIST(
# "./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
#)
from RandAugment import RandAugment
# Add RandAugment with N, M(hyperparameter)
transform_train = torchvision.transforms.Compose([
#transforms.RandomHorizontalFlip(),
#transforms.RandomVerticalFlip(),
torchvision.transforms.ToTensor(),
])
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
### Classic Dataset ###
#Training data
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
#data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
#Testing data
#MNIST
#data_train = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform_train)
#data_val = torchvision.datasets.MNIST("../data", train=True, download=True, transform=transform)
#data_test = torchvision.datasets.MNIST("../data", train=False, download=True, transform=transform)
#CIFAR
data_train = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform_train)
data_val = torchvision.datasets.CIFAR10("../data", train=True, download=download_data, transform=transform)
data_test = torchvision.datasets.CIFAR10("../data", train=False, download=download_data, transform=transform)
train_subset_indices=range(int(len(data_train)/2))
@ -54,5 +55,5 @@ val_subset_indices=range(int(len(data_train)/2),len(data_train))
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(data_val, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)