Ajout fonctionnalitees apprentissage parametre optimisateur + mix dist

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-16 16:38:15 -05:00
parent 75901b69b4
commit cd4b0405b9
3 changed files with 70 additions and 37 deletions

View file

@ -70,14 +70,8 @@ def train_classic(model, opt_param, epochs=1, print_freq=1):
#### Tests ####
tf = time.process_time()
try:
xs_val, ys_val = next(dl_val_it)
except StopIteration: #Fin epoch val
dl_val_it = iter(dl_val)
xs_val, ys_val = next(dl_val_it)
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
val_loss = F.cross_entropy(model(xs_val), ys_val)
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
accuracy, _ =test(model)
model.train()
@ -656,6 +650,8 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
meta_opt.zero_grad()
for epoch in range(1, epochs+1):
#print_torch_mem("Start epoch "+str(epoch))
#print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params))
@ -755,6 +751,8 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
meta_opt.zero_grad()
tf = time.process_time()
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
@ -825,17 +823,13 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
#print("Copy ", countcopy)
return log
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, loss_patience=None, save_sample=False):
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, loss_patience=None, save_sample=False):
device = next(model.parameters()).device
log = []
countcopy=0
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
dl_val_it = iter(dl_val)
#if inner_it!=0:
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=opt_param['Meta']['lr']) #lr=1e-2
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
high_grad_track = True
if inner_it == 0:
high_grad_track=False
@ -848,22 +842,28 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
if dataug_epoch_start==-1: val_loss_monitor = loss_monitor(patience=loss_patience, end_train=2) #1st limit = dataug start
else: val_loss_monitor = loss_monitor(patience=loss_patience) #Val loss monitor (Not on val data : used by Dataug... => Test data)
model.train()
#fmodel = higher.patch.monkeypatch(model['model'], device=None, copy_initial_weights=True)
#diffopt = higher.optim.get_diff_optim(inner_opt, model['model'].parameters(),fmodel=fmodel,track_higher_grads=high_grad_track)
#fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
#diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel,track_higher_grads=high_grad_track)
## Optimizers ##
#Inner Opt
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
diffopt = model['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=high_grad_track)
#meta_opt = torch.optim.Adam(fmodel['data_aug'].parameters(), lr=opt_param['Meta']['lr']) #lr=1e-2
#Meta Opt
hyper_param = list(model['data_aug'].parameters())
if hp_opt :
for param_group in diffopt.param_groups:
for param in list(opt_param['Inner'].keys())[1:]:
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
hyper_param += [param_group[param]]
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
#print(len(model['model']['functional']._fast_params))
model.train()
meta_opt.zero_grad()
for epoch in range(1, epochs+1):
#print_torch_mem("Start epoch "+str(epoch))
#print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params))
@ -919,9 +919,9 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
#print(fmodel['model']._params['b4'].grad)
#print('prob grad', fmodel['data_aug']['prob'].grad)
t = time.process_time()
#t = time.process_time()
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
#print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
@ -937,8 +937,15 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
meta_opt.step()
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
if hp_opt:
for param_group in diffopt.param_groups:
for param in list(opt_param['Inner'].keys())[1:]:
param_group[param].data = param_group[param].data.clamp(min=1e-4)
diffopt.detach_()
model['model'].detach_()
meta_opt.zero_grad()
tf = time.process_time()
@ -963,9 +970,11 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
"acc": accuracy,
"time": tf - t0,
"param": param #if isinstance(model['data_aug'], Data_augV5)
"mix_dist": model['data_aug']['mix_dist'].item(),
"param": param, #if isinstance(model['data_aug'], Data_augV5)
#else [p.item() for p in model['data_aug']['prob']],
}
if hp_opt : data["opt_param"]=[{'lr': p_grp['lr'].item(), 'momentum': p_grp['momentum'].item()} for p_grp in diffopt.param_groups]
log.append(data)
#############
#### Print ####
@ -980,8 +989,12 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
#print('proba grad',model['data_aug']['prob'].grad)
print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
print('Mix:', model['data_aug']['mix_dist'].data)
#print('Reg loss:', model['data_aug'].reg_loss().item())
#print('Aug loss', aug_loss.item())
if hp_opt :
for param_group in diffopt.param_groups:
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
#############
if val_loss_monitor :
model.eval()