Mise a jour de toute les modifs... (Higher: Ajout deux TF, modification val loss, ajout prob dans sample image, ...)

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-10 13:21:34 -05:00
parent e75fb96716
commit c8ce6c8024
6 changed files with 299 additions and 64 deletions

View file

@ -35,6 +35,8 @@ import augmentation_transforms
import numpy as np import numpy as np
download_data=False download_data=False
num_workers=0
pin_memory=False
class AugmentedDataset(VisionDataset): class AugmentedDataset(VisionDataset):
def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None): def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None):
@ -281,14 +283,14 @@ train_subset_indices=range(int(len(data_train)/2))
val_subset_indices=range(int(len(data_train)/2),len(data_train)) val_subset_indices=range(int(len(data_train)/2),len(data_train))
#train_subset_indices=range(BATCH_SIZE*10) #train_subset_indices=range(BATCH_SIZE*10)
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20) #val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices)) dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
### Augmented Dataset ### ### Augmented Dataset ###
#data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2))) #data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
#data_train_aug.augement_data(aug_copy=10) #data_train_aug.augement_data(aug_copy=10)
#print(data_train_aug) #print(data_train_aug)
#dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True) #dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices)) dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False) dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)

View file

@ -6,21 +6,21 @@ from train_utils import *
tf_names = [ tf_names = [
## Geometric TF ## ## Geometric TF ##
'Identity', 'Identity',
'FlipUD', #'FlipUD',
'FlipLR', #'FlipLR',
'Rotate', #'Rotate',
'TranslateX', #'TranslateX',
'TranslateY', #'TranslateY',
'ShearX', #'ShearX',
'ShearY', #'ShearY',
## Color TF (Expect image in the range of [0, 1]) ## ## Color TF (Expect image in the range of [0, 1]) ##
'Contrast', #'Contrast',
'Color', #'Color',
'Brightness', #'Brightness',
'Sharpness', #'Sharpness',
'Posterize', #'Posterize',
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch #'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
#Color TF (Common mag scale) #Color TF (Common mag scale)
#'+Contrast', #'+Contrast',
@ -49,6 +49,8 @@ tf_names = [
#'BadContrast', #'BadContrast',
#'BadBrightness', #'BadBrightness',
'Random',
#'RandBlend'
#Non fonctionnel #Non fonctionnel
#'Auto_Contrast', #Pas opti pour des batch (Super lent) #'Auto_Contrast', #Pas opti pour des batch (Super lent)
#'Equalize', #'Equalize',
@ -65,12 +67,12 @@ else:
if __name__ == "__main__": if __name__ == "__main__":
tasks={ tasks={
'classic', #'classic',
#'aug_dataset', #'aug_dataset',
#'aug_model' 'aug_model'
} }
n_inner_iter = 1 n_inner_iter = 1
epochs = 100 epochs = 1
dataug_epoch_start=0 dataug_epoch_start=0
optim_param={ optim_param={
'Meta':{ 'Meta':{
@ -84,9 +86,9 @@ if __name__ == "__main__":
} }
} }
#model = LeNet(3,10) model = LeNet(3,10)
#model = MobileNetV2(num_classes=10) #model = MobileNetV2(num_classes=10)
model = ResNet(num_classes=10) #model = ResNet(num_classes=10)
#model = WideResNet(num_classes=10, wrn_size=32) #model = WideResNet(num_classes=10, wrn_size=32)
#### Classic #### #### Classic ####
@ -95,8 +97,8 @@ if __name__ == "__main__":
model = model.to(device) model = model.to(device)
print("{} on {} for {} epochs".format(str(model), device_name, epochs)) print("{} on {} for {} epochs".format(str(model), device_name, epochs))
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1) #log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=10)
#log= train_classic_higher(model=model, epochs=epochs) log= train_classic_higher(model=model, epochs=epochs)
exec_time=time.process_time() - t0 exec_time=time.process_time() - t0
#### ####
@ -138,7 +140,7 @@ if __name__ == "__main__":
data_train_aug.augement_data(aug_copy=1) data_train_aug.augement_data(aug_copy=1)
print(data_train_aug) print(data_train_aug)
unsup_ratio = 5 unsup_ratio = 5
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True) dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
unsup_xs, sup_xs, ys = next(iter(dl_unsup)) unsup_xs, sup_xs, ys = next(iter(dl_unsup))
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug))) viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
@ -172,7 +174,7 @@ if __name__ == "__main__":
tf_dict = {k: TF.TF_dict[k] for k in tf_names} tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device) #aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device) aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=True, shared_mag=True), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device) #aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter)) print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
@ -181,7 +183,7 @@ if __name__ == "__main__":
inner_it=n_inner_iter, inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start, dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param, opt_param=optim_param,
print_freq=10, print_freq=1,
KLdiv=True, KLdiv=True,
loss_patience=None) loss_patience=None)

View file

@ -44,8 +44,7 @@ def compute_vaLoss(model, dl_it, dl):
xs, ys = xs.to(device), ys.to(device) xs, ys = xs.to(device), ys.to(device)
model.eval() #Validation sans transfornations ! model.eval() #Validation sans transfornations !
return F.cross_entropy(F.log_softmax(model(xs), dim=1), ys)
return F.cross_entropy(model(xs), ys)
def train_classic(model, opt_param, epochs=1, print_freq=1): def train_classic(model, opt_param, epochs=1, print_freq=1):
device = next(model.parameters()).device device = next(model.parameters()).device
@ -688,25 +687,30 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
else: else:
#Methode KL div #Methode KL div
fmodel.augment(mode=False) if fmodel._data_augmentation :
sup_logits = fmodel(xs) fmodel.augment(mode=False)
sup_logits = fmodel(xs)
fmodel.augment(mode=True)
else:
sup_logits = fmodel(xs)
log_sup=F.log_softmax(sup_logits, dim=1) log_sup=F.log_softmax(sup_logits, dim=1)
fmodel.augment(mode=True)
loss = F.cross_entropy(log_sup, ys) loss = F.cross_entropy(log_sup, ys)
if fmodel._data_augmentation: if fmodel._data_augmentation:
aug_logits = fmodel(xs) aug_logits = fmodel(xs)
log_aug=F.log_softmax(aug_logits, dim=1) log_aug=F.log_softmax(aug_logits, dim=1)
#KL div w/ logits
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
aug_loss=aug_loss.sum(dim=-1)
#aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none') #Similarite predictions (distributions)
w_loss = fmodel['data_aug'].loss_weight() #Weight loss w_loss = fmodel['data_aug'].loss_weight() #Weight loss
aug_loss = (w_loss * aug_loss).mean() #apprentissage differe ?
#if epoch>50: #debut differe ?
#KL div w/ logits - Similarite predictions (distributions)
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
aug_loss = aug_loss.sum(dim=-1)
#aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none')
aug_loss = (w_loss * aug_loss).mean()
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean() aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
#print(aug_loss)
unsupp_coeff = 1 unsupp_coeff = 1
loss += aug_loss * unsupp_coeff loss += aug_loss * unsupp_coeff
@ -717,20 +721,28 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
#print(fmodel['model']._params['b4'].grad) #print(fmodel['model']._params['b4'].grad)
#print('prob grad', fmodel['data_aug']['prob'].grad) #print('prob grad', fmodel['data_aug']['prob'].grad)
#t = time.process_time()
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step) diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
#print(len(fmodel._fast_params),"step", time.process_time()-t)
if(high_grad_track and i%inner_it==0): #Perform Meta step if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
#print("meta") #print("meta")
#Peu utile si high_grad_track = False
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) + fmodel['data_aug'].reg_loss() val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) + fmodel['data_aug'].reg_loss()
#print_graph(val_loss) #print_graph(val_loss)
#t = time.process_time()
val_loss.backward() val_loss.backward()
#print("meta", time.process_time()-t)
#print('proba grad',model['data_aug']['prob'].grad)
countcopy+=1 countcopy+=1
model_copy(src=fmodel, dst=model) model_copy(src=fmodel, dst=model)
optim_copy(dopt=diffopt, opt=inner_opt) optim_copy(dopt=diffopt, opt=inner_opt)
torch.nn.utils.clip_grad_norm_(model['data_aug']['prob'], max_norm=10, norm_type=2) #Prevent exploding grad with RNN
torch.nn.utils.clip_grad_norm_(model['data_aug']['mag'], max_norm=10, norm_type=2) #Prevent exploding grad with RNN
#if epoch>50: #if epoch>50:
meta_opt.step() meta_opt.step()
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1 model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
@ -757,21 +769,6 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
accuracy, test_loss =test(model) accuracy, test_loss =test(model)
model.train() model.train()
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', accuracy)
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',model['data_aug']['prob'].grad)
print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
#print('Reg loss:', model['data_aug'].reg_loss().item())
#print('Aug loss', aug_loss.item())
#############
#### Log #### #### Log ####
#print(type(model['data_aug']) is dataug.Data_augV5) #print(type(model['data_aug']) is dataug.Data_augV5)
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])] param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
@ -787,6 +784,235 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
} }
log.append(data) log.append(data)
############# #############
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', max([x["acc"] for x in log]))
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',model['data_aug']['prob'].grad)
print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
#print('Reg loss:', model['data_aug'].reg_loss().item())
#print('Aug loss', aug_loss.item())
#############
if val_loss_monitor :
model.eval()
val_loss_monitor.register(test_loss)#val_loss.item())
if val_loss_monitor.end_training(): break #Stop training
model.train()
if not model.is_augmenting() and (epoch == dataug_epoch_start or (val_loss_monitor and val_loss_monitor.limit_reached()==1)):
print('Starting Data Augmention...')
dataug_epoch_start = epoch
model.augment(mode=True)
if inner_it != 0: high_grad_track = True
try:
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch), weight_labels=model['data_aug'].loss_weight())
except:
print("Couldn't save finals samples")
pass
#print("Copy ", countcopy)
return log
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, loss_patience=None, save_sample=False):
device = next(model.parameters()).device
log = []
countcopy=0
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
dl_val_it = iter(dl_val)
#if inner_it!=0:
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=opt_param['Meta']['lr']) #lr=1e-2
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
high_grad_track = True
if inner_it == 0:
high_grad_track=False
if dataug_epoch_start!=0:
model.augment(mode=False)
high_grad_track = False
val_loss_monitor= None
if loss_patience != None :
if dataug_epoch_start==-1: val_loss_monitor = loss_monitor(patience=loss_patience, end_train=2) #1st limit = dataug start
else: val_loss_monitor = loss_monitor(patience=loss_patience) #Val loss monitor (Not on val data : used by Dataug... => Test data)
model.train()
#fmodel = higher.patch.monkeypatch(model['model'], device=None, copy_initial_weights=True)
#diffopt = higher.optim.get_diff_optim(inner_opt, model['model'].parameters(),fmodel=fmodel,track_higher_grads=high_grad_track)
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel,track_higher_grads=high_grad_track)
#meta_opt = torch.optim.Adam(fmodel['data_aug'].parameters(), lr=opt_param['Meta']['lr']) #lr=1e-2
print(len(fmodel._fast_params))
for epoch in range(1, epochs+1):
#print_torch_mem("Start epoch "+str(epoch))
#print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params))
t0 = time.process_time()
#with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt):
for i, (xs, ys) in enumerate(dl_train):
xs, ys = xs.to(device), ys.to(device)
if(not KLdiv):
#Methode uniforme
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
loss = F.cross_entropy(F.log_softmax(logits, dim=1), ys, reduction='none') # no need to call loss.backwards()
if fmodel._data_augmentation: #Weight loss
w_loss = fmodel['data_aug'].loss_weight()#.to(device)
loss = loss * w_loss
loss = loss.mean()
else:
#Methode KL div
if fmodel._data_augmentation :
fmodel.augment(mode=False)
sup_logits = fmodel(xs)
fmodel.augment(mode=True)
else:
sup_logits = fmodel(xs)
log_sup=F.log_softmax(sup_logits, dim=1)
loss = F.cross_entropy(log_sup, ys)
if fmodel._data_augmentation:
aug_logits = fmodel(xs)
log_aug=F.log_softmax(aug_logits, dim=1)
aug_loss=0
w_loss = fmodel['data_aug'].loss_weight() #Weight loss
#if epoch>50: #debut differe ?
#KL div w/ logits - Similarite predictions (distributions)
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
aug_loss = aug_loss.sum(dim=-1)
#aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none')
aug_loss = (w_loss * aug_loss).mean()
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
unsupp_coeff = 1
loss += aug_loss * unsupp_coeff
#to visualize computational graph
#print_graph(loss)
#loss.backward(retain_graph=True)
#print(fmodel['model']._params['b4'].grad)
#print('prob grad', fmodel['data_aug']['prob'].grad)
#for _, p in fmodel['data_aug'].named_parameters():
# p.requires_grad = False
t = time.process_time()
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
print(len(fmodel._fast_params),"step", time.process_time()-t)
#for _, p in fmodel['data_aug'].named_parameters():
# p.requires_grad = True
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
#print("meta")
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val) + fmodel['data_aug'].reg_loss()
#print_graph(val_loss)
val_loss.backward()
print('proba grad',fmodel['data_aug']['prob'].grad)
#countcopy+=1
#model_copy(src=fmodel, dst=model)
#optim_copy(dopt=diffopt, opt=inner_opt)
torch.nn.utils.clip_grad_norm_(fmodel['data_aug']['prob'], max_norm=10, norm_type=2) #Prevent exploding grad with RNN
torch.nn.utils.clip_grad_norm_(fmodel['data_aug']['mag'], max_norm=10, norm_type=2) #Prevent exploding grad with RNN
for paramName, paramValue, in fmodel['data_aug'].named_parameters():
for netCopyName, netCopyValue, in model['data_aug'].named_parameters():
if paramName == netCopyName:
netCopyValue.grad = paramValue.grad
#del meta_opt.param_groups[0]
#meta_opt.add_param_group({'params' : [p for p in fmodel['data_aug'].parameters()]})
meta_opt.step()
fmodel['data_aug'].load_state_dict(model['data_aug'].state_dict())
fmodel['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
#model['data_aug'].next_TF_set()
#fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
#diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
#fmodel.fast_params=[higher.utils._copy_tensor(t,safe_copy=True) if isinstance(t, torch.Tensor) else t for t in fmodel.parameters()]
diffopt.detach_()
tmp = fmodel.fast_params
fmodel._fast_params=[]
fmodel.update_params(tmp)
for p in fmodel.fast_params:
p.detach_().requires_grad_()
print(len(fmodel._fast_params))
print('TF Proba :', fmodel['data_aug']['prob'].data)
tf = time.process_time()
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
#viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
#model_copy(src=fmodel, dst=model)
if(not high_grad_track):
#countcopy+=1
#model_copy(src=fmodel, dst=model)
optim_copy(dopt=diffopt, opt=inner_opt)
val_loss = compute_vaLoss(model=fmodel, dl_it=dl_val_it, dl=dl_val)
#Necessaire pour reset higher (Accumule les fast_param meme avec track_higher_grads = False)
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
accuracy, test_loss =test(model)
model.train()
#### Log ####
#print(type(model['data_aug']) is dataug.Data_augV5)
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
data={
"epoch": epoch,
"train_loss": loss.item(),
"val_loss": val_loss.item(),
"acc": accuracy,
"time": tf - t0,
"param": param #if isinstance(model['data_aug'], Data_augV5)
#else [p.item() for p in model['data_aug']['prob']],
}
log.append(data)
#############
#### Print ####
if(print_freq and epoch%print_freq==0):
print('-'*9)
print('Epoch : %d/%d'%(epoch,epochs))
print('Time : %.00f'%(tf - t0))
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
print('Accuracy :', max([x["acc"] for x in log]))
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',model['data_aug']['prob'].grad)
print('TF Mag :', model['data_aug']['mag'].data)
#print('Mag grad',model['data_aug']['mag'].grad)
#print('Reg loss:', model['data_aug'].reg_loss().item())
#print('Aug loss', aug_loss.item())
#############
if val_loss_monitor : if val_loss_monitor :
model.eval() model.eval()
val_loss_monitor.register(test_loss)#val_loss.item()) val_loss_monitor.register(test_loss)#val_loss.item())

View file

@ -96,10 +96,13 @@ TF_dict={ #Dataugv5
'BadTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=1))), 'BadTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=1))),
'BadTranslateY_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=1))), 'BadTranslateY_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=1))),
'BadColor':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))), 'BadColor':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*3))),
'BadSharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))), 'BadSharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*3))),
'BadContrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))), 'BadContrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*3))),
'BadBrightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*2))), 'BadBrightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=1.9, maxval=2*3))),
'Random':(lambda x, mag: torch.rand_like(x)),
'RandBlend': (lambda x, mag: blend(x,torch.rand_like(x), alpha=torch.tensor(0.5,device=mag.device).expand(x.shape[0]))),
#Non fonctionnel #Non fonctionnel
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent) #'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)

View file

@ -22,7 +22,7 @@ class timer():
def print_graph(PyTorch_obj, fig_name='graph'): def print_graph(PyTorch_obj, fig_name='graph'):
graph=make_dot(PyTorch_obj) #Loss give the whole graph graph=make_dot(PyTorch_obj) #Loss give the whole graph
graph.format = 'svg' #https://graphviz.readthedocs.io/en/stable/manual.html#formats graph.format = 'pdf' #https://graphviz.readthedocs.io/en/stable/manual.html#formats
graph.render(fig_name) graph.render(fig_name)
def plot_res(log, fig_name='res', param_names=None): def plot_res(log, fig_name='res', param_names=None):
@ -183,7 +183,7 @@ def plot_TF_res(log, tf_names, fig_name='res'):
plt.savefig(fig_name, bbox_inches='tight') plt.savefig(fig_name, bbox_inches='tight')
plt.close() plt.close()
def viz_sample_data(imgs, labels, fig_name='data_sample'): def viz_sample_data(imgs, labels, fig_name='data_sample', weight_labels=None):
sample = imgs[0:25,].permute(0, 2, 3, 1).squeeze().cpu() sample = imgs[0:25,].permute(0, 2, 3, 1).squeeze().cpu()
@ -194,7 +194,9 @@ def viz_sample_data(imgs, labels, fig_name='data_sample'):
plt.yticks([]) plt.yticks([])
plt.grid(False) plt.grid(False)
plt.imshow(sample[i,].detach().numpy(), cmap=plt.cm.binary) plt.imshow(sample[i,].detach().numpy(), cmap=plt.cm.binary)
plt.xlabel(labels[i].item()) label = str(labels[i].item())
if weight_labels is not None : label+= ("- p %.2f" % weight_labels[i].item())
plt.xlabel(label)
plt.savefig(fig_name) plt.savefig(fig_name)
print("Sample saved :", fig_name) print("Sample saved :", fig_name)