mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Mise a jour de toute les modifs... (Higher: Ajout deux TF, modification val loss, ajout prob dans sample image, ...)
This commit is contained in:
parent
e75fb96716
commit
c8ce6c8024
6 changed files with 299 additions and 64 deletions
|
@ -6,21 +6,21 @@ from train_utils import *
|
|||
tf_names = [
|
||||
## Geometric TF ##
|
||||
'Identity',
|
||||
'FlipUD',
|
||||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
#'FlipUD',
|
||||
#'FlipLR',
|
||||
#'Rotate',
|
||||
#'TranslateX',
|
||||
#'TranslateY',
|
||||
#'ShearX',
|
||||
#'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
#'Contrast',
|
||||
#'Color',
|
||||
#'Brightness',
|
||||
#'Sharpness',
|
||||
#'Posterize',
|
||||
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
#Color TF (Common mag scale)
|
||||
#'+Contrast',
|
||||
|
@ -49,6 +49,8 @@ tf_names = [
|
|||
#'BadContrast',
|
||||
#'BadBrightness',
|
||||
|
||||
'Random',
|
||||
#'RandBlend'
|
||||
#Non fonctionnel
|
||||
#'Auto_Contrast', #Pas opti pour des batch (Super lent)
|
||||
#'Equalize',
|
||||
|
@ -65,12 +67,12 @@ else:
|
|||
if __name__ == "__main__":
|
||||
|
||||
tasks={
|
||||
'classic',
|
||||
#'classic',
|
||||
#'aug_dataset',
|
||||
#'aug_model'
|
||||
'aug_model'
|
||||
}
|
||||
n_inner_iter = 1
|
||||
epochs = 100
|
||||
epochs = 1
|
||||
dataug_epoch_start=0
|
||||
optim_param={
|
||||
'Meta':{
|
||||
|
@ -84,9 +86,9 @@ if __name__ == "__main__":
|
|||
}
|
||||
}
|
||||
|
||||
#model = LeNet(3,10)
|
||||
model = LeNet(3,10)
|
||||
#model = MobileNetV2(num_classes=10)
|
||||
model = ResNet(num_classes=10)
|
||||
#model = ResNet(num_classes=10)
|
||||
#model = WideResNet(num_classes=10, wrn_size=32)
|
||||
|
||||
#### Classic ####
|
||||
|
@ -95,8 +97,8 @@ if __name__ == "__main__":
|
|||
model = model.to(device)
|
||||
|
||||
print("{} on {} for {} epochs".format(str(model), device_name, epochs))
|
||||
log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=1)
|
||||
#log= train_classic_higher(model=model, epochs=epochs)
|
||||
#log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=10)
|
||||
log= train_classic_higher(model=model, epochs=epochs)
|
||||
|
||||
exec_time=time.process_time() - t0
|
||||
####
|
||||
|
@ -138,7 +140,7 @@ if __name__ == "__main__":
|
|||
data_train_aug.augement_data(aug_copy=1)
|
||||
print(data_train_aug)
|
||||
unsup_ratio = 5
|
||||
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True)
|
||||
dl_unsup = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE*unsup_ratio, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
unsup_xs, sup_xs, ys = next(iter(dl_unsup))
|
||||
viz_sample_data(imgs=sup_xs, labels=ys, fig_name='samples/data_sample_{}'.format(str(data_train_aug)))
|
||||
|
@ -172,7 +174,7 @@ if __name__ == "__main__":
|
|||
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), model).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, fixed_prob=False, fixed_mag=True, shared_mag=True), model).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||
|
||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||
|
@ -181,7 +183,7 @@ if __name__ == "__main__":
|
|||
inner_it=n_inner_iter,
|
||||
dataug_epoch_start=dataug_epoch_start,
|
||||
opt_param=optim_param,
|
||||
print_freq=10,
|
||||
print_freq=1,
|
||||
KLdiv=True,
|
||||
loss_patience=None)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue