Supression res mauvais test brutus

This commit is contained in:
Harle, Antoine (Contracteur) 2019-12-04 10:36:34 -05:00
parent 6b7ed4836e
commit c4e2e30151
19 changed files with 11 additions and 182711 deletions

View file

@ -2,7 +2,7 @@ from utils import *
if __name__ == "__main__":
#'''
'''
files=[
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
@ -16,7 +16,7 @@ if __name__ == "__main__":
data = json.load(json_file)
plot_resV2(data['Log'], fig_name=file.replace('.json','').replace('log/',''), param_names=data['Param_names'])
#plot_TF_influence(data['Log'], param_names=data['Param_names'])
#'''
'''
## Loss , Acc, Proba = f(epoch) ##
#plot_compare(filenames=files, fig_name="res/compare")
@ -76,11 +76,11 @@ if __name__ == "__main__":
'''
#Res print
'''
#'''
nb_run=3
accs = []
times = []
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Mix1.0-18TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
for idx, file in enumerate(files):
#legend+=str(idx)+'-'+file+'\n'
@ -90,4 +90,4 @@ if __name__ == "__main__":
times.append(data['Time'][0])
print(files[0], np.mean(accs), np.std(accs), np.mean(times))
'''
#'''

View file

@ -5,7 +5,7 @@ from torch.distributions import *
#import kornia
#import random
#import numpy as np
import numpy as np
import copy
import transformations as TF
@ -692,7 +692,6 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
else:
return "Data_augV5(Mix%.1f%s-%dTFx%d-%s)" % (self._mix_factor,dist_param, self._nb_tf, self._N_seqTF, mag_param)
import numpy as np
class Data_augV6(nn.Module): #Optimisation sequentielle
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=None, fixed_mag=True, shared_mag=True):
super(Data_augV6, self).__init__()

View file

@ -96,7 +96,7 @@ if __name__ == "__main__":
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)

View file

@ -616,9 +616,10 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
model_copy(src=fmodel, dst=model)
optim_copy(dopt=diffopt, opt=inner_opt)
meta_opt.step()
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
#model['data_aug'].next_TF_set()
if epoch>50:
meta_opt.step()
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
#model['data_aug'].next_TF_set()
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)