mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Rangement dans le code
This commit is contained in:
parent
96bb7d5002
commit
bd70efab96
2 changed files with 10 additions and 705 deletions
|
@ -1,15 +1,7 @@
|
|||
from torch.utils.data import SubsetRandomSampler
|
||||
import torch.optim as optim
|
||||
import torchvision
|
||||
import higher
|
||||
|
||||
from model import *
|
||||
from dataug import *
|
||||
from utils import *
|
||||
|
||||
BATCH_SIZE = 300
|
||||
#TEST_SIZE = 300
|
||||
TEST_SIZE = 10000
|
||||
#from utils import *
|
||||
from train_utils import *
|
||||
|
||||
tf_names = [
|
||||
## Geometric TF ##
|
||||
|
@ -35,46 +27,6 @@ tf_names = [
|
|||
#'Equalize',
|
||||
]
|
||||
|
||||
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
||||
#transform_train = torchvision.transforms.Compose([
|
||||
# torchvision.transforms.RandomHorizontalFlip(),
|
||||
# torchvision.transforms.ToTensor(),
|
||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
#])
|
||||
transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.ToTensor(),
|
||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
])
|
||||
'''
|
||||
data_train = torchvision.datasets.MNIST(
|
||||
"./data", train=True, download=True,
|
||||
transform=torchvision.transforms.Compose([
|
||||
#torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
||||
torchvision.transforms.ToTensor()
|
||||
])
|
||||
)
|
||||
data_test = torchvision.datasets.MNIST(
|
||||
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
||||
)
|
||||
'''
|
||||
data_train = torchvision.datasets.CIFAR10(
|
||||
"./data", train=True, download=True, transform=transform
|
||||
)
|
||||
#data_val = torchvision.datasets.CIFAR10(
|
||||
# "./data", train=True, download=True, transform=transform
|
||||
#)
|
||||
data_test = torchvision.datasets.CIFAR10(
|
||||
"./data", train=False, download=True, transform=transform
|
||||
)
|
||||
#'''
|
||||
train_subset_indices=range(int(len(data_train)/2))
|
||||
#train_subset_indices=range(BATCH_SIZE*10)
|
||||
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
||||
|
||||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices))
|
||||
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices))
|
||||
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False)
|
||||
|
||||
device = torch.device('cuda')
|
||||
|
||||
if device == torch.device('cpu'):
|
||||
|
@ -82,655 +34,6 @@ if device == torch.device('cpu'):
|
|||
else:
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
|
||||
|
||||
def test(model):
|
||||
model.eval()
|
||||
for i, (features, labels) in enumerate(dl_test):
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
pred = model.forward(features)
|
||||
return pred.argmax(dim=1).eq(labels).sum().item() / TEST_SIZE * 100
|
||||
|
||||
def compute_vaLoss(model, dl_val_it):
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
try:
|
||||
model.augment(mode=False) #Validation sans transfornations !
|
||||
except:
|
||||
pass
|
||||
return F.cross_entropy(model(xs_val), ys_val)
|
||||
|
||||
def train_classic(model, epochs=1):
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
log = []
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch")
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
optim.zero_grad()
|
||||
pred = model.forward(features)
|
||||
loss = F.cross_entropy(pred,labels)
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy=test(model)
|
||||
model.train()
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def train_classic_higher(model, epochs=1):
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
log = []
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
|
||||
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, diffopt):
|
||||
|
||||
for epoch in range(epochs):
|
||||
#print_torch_mem("Start epoch "+str(epoch))
|
||||
#print("Fast param ",len(fmodel._fast_params))
|
||||
t0 = time.process_time()
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
#print_torch_mem("Start iter")
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
#optim.zero_grad()
|
||||
pred = fmodel.forward(features)
|
||||
loss = F.cross_entropy(pred,labels)
|
||||
#.backward()
|
||||
#optim.step()
|
||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
|
||||
model_copy(src=fmodel, dst=model, patch_copy=False)
|
||||
optim_copy(dopt=diffopt, opt=optim)
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(optim, model.parameters(),fmodel=fmodel,track_higher_grads=False)
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy=test(model)
|
||||
model.train()
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
return log
|
||||
|
||||
def train_classic_tests(model, epochs=1):
|
||||
#opt = torch.optim.Adam(model.parameters(), lr=1e-3)
|
||||
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
countcopy=0
|
||||
model.train()
|
||||
dl_val_it = iter(dl_val)
|
||||
log = []
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
doptim = higher.optim.get_diff_optim(optim, model.parameters(), fmodel=fmodel, track_higher_grads=False)
|
||||
for epoch in range(epochs):
|
||||
print_torch_mem("Start epoch")
|
||||
print(len(fmodel._fast_params))
|
||||
t0 = time.process_time()
|
||||
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=True) as (fmodel, doptim):
|
||||
|
||||
#fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
#doptim = higher.optim.get_diff_optim(optim, model.parameters(), track_higher_grads=True)
|
||||
|
||||
for i, (features, labels) in enumerate(dl_train):
|
||||
features,labels = features.to(device), labels.to(device)
|
||||
|
||||
#with higher.innerloop_ctx(model, optim, copy_initial_weights=True, track_higher_grads=False) as (fmodel, doptim):
|
||||
|
||||
|
||||
#optim.zero_grad()
|
||||
pred = fmodel.forward(features)
|
||||
loss = F.cross_entropy(pred,labels)
|
||||
doptim.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
#loss.backward()
|
||||
#new_params = doptim.step(loss, params=fmodel.parameters())
|
||||
#fmodel.update_params(new_params)
|
||||
|
||||
|
||||
#print('Fast param',len(fmodel._fast_params))
|
||||
#print('opt state', type(doptim.state[0][0]['momentum_buffer']), doptim.state[0][2]['momentum_buffer'].shape)
|
||||
|
||||
if False or (len(fmodel._fast_params)>1):
|
||||
print("fmodel fast param",len(fmodel._fast_params))
|
||||
'''
|
||||
#val_loss = F.cross_entropy(fmodel(features), labels)
|
||||
|
||||
#print_graph(val_loss)
|
||||
|
||||
#val_loss.backward()
|
||||
#print('bip')
|
||||
|
||||
tmp = fmodel.parameters()
|
||||
|
||||
#print(list(tmp)[1])
|
||||
tmp = [higher.utils._copy_tensor(t,safe_copy=True) if isinstance(t, torch.Tensor) else t for t in tmp]
|
||||
#print(len(tmp))
|
||||
|
||||
#fmodel._fast_params.clear()
|
||||
del fmodel._fast_params
|
||||
fmodel._fast_params=None
|
||||
|
||||
fmodel.fast_params=tmp # Surcharge la memoire
|
||||
#fmodel.update_params(tmp) #Meilleur perf / Surcharge la memoire avec trach higher grad
|
||||
|
||||
#optim._fmodel=fmodel
|
||||
'''
|
||||
|
||||
|
||||
countcopy+=1
|
||||
model_copy(src=fmodel, dst=model, patch_copy=False)
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
#doptim.detach_dyn()
|
||||
#tmp = doptim.state
|
||||
#tmp = doptim.state_dict()
|
||||
#for k, v in tmp['state'].items():
|
||||
# print('dict',k, type(v))
|
||||
|
||||
a = optim.param_groups[0]['params'][0]
|
||||
state = optim.state[a]
|
||||
#state['momentum_buffer'] = None
|
||||
#print('opt state', type(optim.state[a]), len(optim.state[a]))
|
||||
#optim.load_state_dict(tmp)
|
||||
|
||||
|
||||
for group_idx, group in enumerate(optim.param_groups):
|
||||
# print('gp idx',group_idx)
|
||||
for p_idx, p in enumerate(group['params']):
|
||||
optim.state[p]=doptim.state[group_idx][p_idx]
|
||||
|
||||
#print('opt state', type(optim.state[a]['momentum_buffer']), optim.state[a]['momentum_buffer'][0:10])
|
||||
#print('dopt state', type(doptim.state[0][0]['momentum_buffer']), doptim.state[0][0]['momentum_buffer'][0:10])
|
||||
'''
|
||||
for a in tmp:
|
||||
#print(type(a), len(a))
|
||||
for nb, b in a.items():
|
||||
#print(nb, type(b), len(b))
|
||||
for n, state in b.items():
|
||||
#print(n, type(states))
|
||||
#print(state.grad_fn)
|
||||
state = torch.tensor(state.data).requires_grad_()
|
||||
#print(state.grad_fn)
|
||||
'''
|
||||
|
||||
|
||||
doptim = higher.optim.get_diff_optim(optim, model.parameters(), track_higher_grads=True)
|
||||
#doptim.state = tmp
|
||||
|
||||
|
||||
countcopy+=1
|
||||
model_copy(src=fmodel, dst=model)
|
||||
optim_copy(dopt=diffopt, opt=inner_opt)
|
||||
|
||||
#### Tests ####
|
||||
tf = time.process_time()
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
val_loss = F.cross_entropy(model(xs_val), ys_val)
|
||||
accuracy=test(model)
|
||||
model.train()
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": None,
|
||||
}
|
||||
log.append(data)
|
||||
|
||||
#countcopy+=1
|
||||
#model_copy(src=fmodel, dst=model, patch_copy=False)
|
||||
#optim.load_state_dict(doptim.state_dict()) #Besoin sauver etat otpim ?
|
||||
|
||||
print("Copy ", countcopy)
|
||||
return log
|
||||
|
||||
def run_simple_dataug(inner_it, epochs=1):
|
||||
|
||||
dl_train_it = iter(dl_train)
|
||||
dl_val_it = iter(dl_val)
|
||||
|
||||
#aug_model = nn.Sequential(
|
||||
# Data_aug(),
|
||||
# LeNet(1,10),
|
||||
# )
|
||||
aug_model = Augmented_model(Data_aug(), LeNet(1,10)).to(device)
|
||||
print(str(aug_model))
|
||||
meta_opt = torch.optim.Adam(aug_model['data_aug'].parameters(), lr=1e-2)
|
||||
inner_opt = torch.optim.SGD(aug_model['model'].parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
log = []
|
||||
t0 = time.process_time()
|
||||
|
||||
epoch = 0
|
||||
while epoch < epochs:
|
||||
meta_opt.zero_grad()
|
||||
aug_model.train()
|
||||
with higher.innerloop_ctx(aug_model, inner_opt, copy_initial_weights=True, track_higher_grads=True) as (fmodel, diffopt): #effet copy_initial_weight pas clair...
|
||||
|
||||
for i in range(n_inner_iter):
|
||||
try:
|
||||
xs, ys = next(dl_train_it)
|
||||
except StopIteration: #Fin epoch train
|
||||
tf = time.process_time()
|
||||
epoch +=1
|
||||
dl_train_it = iter(dl_train)
|
||||
xs, ys = next(dl_train_it)
|
||||
|
||||
accuracy=test(aug_model)
|
||||
aug_model.train()
|
||||
|
||||
#### Print ####
|
||||
print('-'*9)
|
||||
print('Epoch %d/%d'%(epoch,epochs))
|
||||
print('train loss',loss.item(), '/ val loss', val_loss.item())
|
||||
print('acc', accuracy)
|
||||
print('mag', aug_model['data_aug']['mag'].item())
|
||||
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": aug_model['data_aug']['mag'].item(),
|
||||
}
|
||||
log.append(data)
|
||||
t0 = time.process_time()
|
||||
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
|
||||
|
||||
loss = F.cross_entropy(logits, ys) # no need to call loss.backwards()
|
||||
#loss.backward(retain_graph=True)
|
||||
#print(fmodel['model']._params['b4'].grad)
|
||||
#print('mag', fmodel['data_aug']['mag'].grad)
|
||||
|
||||
diffopt.step(loss) # note that `step` must take `loss` as an argument!
|
||||
# The line above gets P[t+1] from P[t] and loss[t]. `step` also returns
|
||||
# these new parameters, as an alternative to getting them from
|
||||
# `fmodel.fast_params` or `fmodel.parameters()` after calling
|
||||
# `diffopt.step`.
|
||||
|
||||
# At this point, or at any point in the iteration, you can take the
|
||||
# gradient of `fmodel.parameters()` (or equivalently
|
||||
# `fmodel.fast_params`) w.r.t. `fmodel.parameters(time=0)` (equivalently
|
||||
# `fmodel.init_fast_params`). i.e. `fast_params` will always have
|
||||
# `grad_fn` as an attribute, and be part of the gradient tape.
|
||||
|
||||
# At the end of your inner loop you can obtain these e.g. ...
|
||||
#grad_of_grads = torch.autograd.grad(
|
||||
# meta_loss_fn(fmodel.parameters()), fmodel.parameters(time=0))
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
fmodel.augment(mode=False)
|
||||
val_logits = fmodel(xs_val) #Validation sans transfornations !
|
||||
val_loss = F.cross_entropy(val_logits, ys_val)
|
||||
#print('val_loss',val_loss.item())
|
||||
val_loss.backward()
|
||||
|
||||
#print('mag', fmodel['data_aug']['mag'], '/', fmodel['data_aug']['mag'].grad)
|
||||
|
||||
#model=copy.deepcopy(fmodel)
|
||||
aug_model.load_state_dict(fmodel.state_dict()) #Do not copy gradient !
|
||||
#Copie des gradients
|
||||
for paramName, paramValue, in fmodel.named_parameters():
|
||||
for netCopyName, netCopyValue, in aug_model.named_parameters():
|
||||
if paramName == netCopyName:
|
||||
netCopyValue.grad = paramValue.grad
|
||||
|
||||
#print('mag', aug_model['data_aug']['mag'], '/', aug_model['data_aug']['mag'].grad)
|
||||
meta_opt.step()
|
||||
|
||||
plot_res(log, fig_name="res/{}-{} epochs- {} in_it".format(str(aug_model),epochs,inner_it))
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
print(str(aug_model),": acc", max([x["acc"] for x in log]), "in (ms):", np.mean(times), "+/-", np.std(times))
|
||||
|
||||
def run_dist_dataug(model, epochs=1, inner_it=1, dataug_epoch_start=0):
|
||||
|
||||
dl_train_it = iter(dl_train)
|
||||
dl_val_it = iter(dl_val)
|
||||
|
||||
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-3)
|
||||
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
high_grad_track = True
|
||||
if dataug_epoch_start>0:
|
||||
model.augment(mode=False)
|
||||
high_grad_track = False
|
||||
|
||||
model.train()
|
||||
|
||||
log = []
|
||||
t0 = time.process_time()
|
||||
|
||||
countcopy=0
|
||||
val_loss=torch.tensor(0)
|
||||
opt_param=None
|
||||
|
||||
epoch = 0
|
||||
while epoch < epochs:
|
||||
meta_opt.zero_grad()
|
||||
with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt): #effet copy_initial_weight pas clair...
|
||||
|
||||
for i in range(n_inner_iter):
|
||||
try:
|
||||
xs, ys = next(dl_train_it)
|
||||
except StopIteration: #Fin epoch train
|
||||
tf = time.process_time()
|
||||
epoch +=1
|
||||
dl_train_it = iter(dl_train)
|
||||
xs, ys = next(dl_train_it)
|
||||
|
||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
#viz_sample_data(imgs=aug_model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
|
||||
|
||||
accuracy=test(model)
|
||||
model.train()
|
||||
|
||||
#### Print ####
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
||||
print('TF Proba :', model['data_aug']['prob'].data)
|
||||
#print('proba grad',aug_model['data_aug']['prob'].grad)
|
||||
#############
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": [p for p in model['data_aug']['prob']],
|
||||
}
|
||||
log.append(data)
|
||||
#############
|
||||
|
||||
if epoch == dataug_epoch_start:
|
||||
print('Starting Data Augmention...')
|
||||
model.augment(mode=True)
|
||||
high_grad_track = True
|
||||
|
||||
t0 = time.process_time()
|
||||
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
|
||||
'''
|
||||
#Methode exacte
|
||||
final_loss = 0
|
||||
for tf_idx in range(fmodel['data_aug']._nb_tf):
|
||||
fmodel['data_aug'].transf_idx=tf_idx
|
||||
logits = fmodel(xs)
|
||||
loss = F.cross_entropy(logits, ys)
|
||||
#loss.backward(retain_graph=True)
|
||||
#print('idx', tf_idx)
|
||||
#print(fmodel['data_aug']['prob'][tf_idx], fmodel['data_aug']['prob'][tf_idx].grad)
|
||||
final_loss += loss*fmodel['data_aug']['prob'][tf_idx] #Take it in the forward function ?
|
||||
|
||||
loss = final_loss
|
||||
'''
|
||||
#Methode uniforme
|
||||
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
|
||||
loss = F.cross_entropy(logits, ys, reduction='none') # no need to call loss.backwards()
|
||||
if fmodel._data_augmentation: #Weight loss
|
||||
w_loss = fmodel['data_aug'].loss_weight().to(device)
|
||||
loss = loss * w_loss
|
||||
loss = loss.mean()
|
||||
#'''
|
||||
|
||||
#to visualize computational graph
|
||||
#print_graph(loss)
|
||||
|
||||
#loss.backward(retain_graph=True)
|
||||
#print(fmodel['model']._params['b4'].grad)
|
||||
#print('prob grad', fmodel['data_aug']['prob'].grad)
|
||||
|
||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
|
||||
try:
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
except StopIteration: #Fin epoch val
|
||||
dl_val_it = iter(dl_val)
|
||||
xs_val, ys_val = next(dl_val_it)
|
||||
xs_val, ys_val = xs_val.to(device), ys_val.to(device)
|
||||
|
||||
fmodel.augment(mode=False) #Validation sans transfornations !
|
||||
val_loss = F.cross_entropy(fmodel(xs_val), ys_val)
|
||||
|
||||
#print_graph(val_loss)
|
||||
|
||||
val_loss.backward()
|
||||
|
||||
countcopy+=1
|
||||
model_copy(src=fmodel, dst=model)
|
||||
optim_copy(dopt=diffopt, opt=inner_opt)
|
||||
|
||||
meta_opt.step()
|
||||
model['data_aug'].adjust_prob() #Contrainte sum(proba)=1
|
||||
|
||||
print("Copy ", countcopy)
|
||||
return log
|
||||
|
||||
def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, loss_patience=None):
|
||||
|
||||
log = []
|
||||
countcopy=0
|
||||
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
|
||||
dl_val_it = iter(dl_val)
|
||||
|
||||
meta_opt = torch.optim.Adam(model['data_aug'].parameters(), lr=1e-2)
|
||||
inner_opt = torch.optim.SGD(model['model'].parameters(), lr=1e-2, momentum=0.9)
|
||||
|
||||
high_grad_track = True
|
||||
if inner_it == 0:
|
||||
high_grad_track=False
|
||||
if dataug_epoch_start!=0:
|
||||
model.augment(mode=False)
|
||||
high_grad_track = False
|
||||
|
||||
val_loss_monitor= None
|
||||
if loss_patience != None :
|
||||
if dataug_epoch_start==-1: val_loss_monitor = loss_monitor(patience=loss_patience, end_train=2) #1st limit = dataug start
|
||||
else: val_loss_monitor = loss_monitor(patience=loss_patience) #Val loss monitor
|
||||
|
||||
model.train()
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel,track_higher_grads=high_grad_track)
|
||||
|
||||
for epoch in range(1, epochs+1):
|
||||
#print_torch_mem("Start epoch "+str(epoch))
|
||||
#print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params))
|
||||
t0 = time.process_time()
|
||||
#with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt):
|
||||
|
||||
for i, (xs, ys) in enumerate(dl_train):
|
||||
xs, ys = xs.to(device), ys.to(device)
|
||||
'''
|
||||
#Methode exacte
|
||||
final_loss = 0
|
||||
for tf_idx in range(fmodel['data_aug']._nb_tf):
|
||||
fmodel['data_aug'].transf_idx=tf_idx
|
||||
logits = fmodel(xs)
|
||||
loss = F.cross_entropy(logits, ys)
|
||||
#loss.backward(retain_graph=True)
|
||||
#print('idx', tf_idx)
|
||||
#print(fmodel['data_aug']['prob'][tf_idx], fmodel['data_aug']['prob'][tf_idx].grad)
|
||||
final_loss += loss*fmodel['data_aug']['prob'][tf_idx] #Take it in the forward function ?
|
||||
|
||||
loss = final_loss
|
||||
'''
|
||||
#Methode uniforme
|
||||
|
||||
logits = fmodel(xs) # modified `params` can also be passed as a kwarg
|
||||
loss = F.cross_entropy(logits, ys, reduction='none') # no need to call loss.backwards()
|
||||
#PAS PONDERE LOSS POUR DIST MIX
|
||||
if fmodel._data_augmentation: # and not fmodel['data_aug']._mix_dist: #Weight loss
|
||||
w_loss = fmodel['data_aug'].loss_weight().to(device)
|
||||
loss = loss * w_loss
|
||||
loss = loss.mean()
|
||||
#'''
|
||||
|
||||
#to visualize computational graph
|
||||
#print_graph(loss)
|
||||
|
||||
#loss.backward(retain_graph=True)
|
||||
#print(fmodel['model']._params['b4'].grad)
|
||||
#print('prob grad', fmodel['data_aug']['prob'].grad)
|
||||
|
||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||
|
||||
if(high_grad_track and i%inner_it==0): #Perform Meta step
|
||||
#print("meta")
|
||||
#Peu utile si high_grad_track = False
|
||||
val_loss = compute_vaLoss(model=fmodel, dl_val_it=dl_val_it)
|
||||
|
||||
#print_graph(val_loss)
|
||||
|
||||
val_loss.backward()
|
||||
|
||||
countcopy+=1
|
||||
model_copy(src=fmodel, dst=model)
|
||||
optim_copy(dopt=diffopt, opt=inner_opt)
|
||||
|
||||
meta_opt.step()
|
||||
model['data_aug'].adjust_prob(soft=False) #Contrainte sum(proba)=1
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
|
||||
|
||||
tf = time.process_time()
|
||||
|
||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||
#viz_sample_data(imgs=aug_model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
|
||||
|
||||
if(not high_grad_track):
|
||||
countcopy+=1
|
||||
model_copy(src=fmodel, dst=model)
|
||||
optim_copy(dopt=diffopt, opt=inner_opt)
|
||||
val_loss = compute_vaLoss(model=fmodel, dl_val_it=dl_val_it)
|
||||
|
||||
#Necessaire pour reset higher (Accumule les fast_param meme avec track_higher_grads = False)
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
|
||||
|
||||
accuracy=test(model)
|
||||
model.train()
|
||||
|
||||
#### Print ####
|
||||
if(print_freq and epoch%print_freq==0):
|
||||
print('-'*9)
|
||||
print('Epoch : %d/%d'%(epoch,epochs))
|
||||
print('Time : %.00f ms'%(tf - t0))
|
||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||
print('Accuracy :', accuracy)
|
||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
||||
print('TF Proba :', model['data_aug']['prob'].data)
|
||||
#print('proba grad',aug_model['data_aug']['prob'].grad)
|
||||
#############
|
||||
#### Log ####
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"train_loss": loss.item(),
|
||||
"val_loss": val_loss.item(),
|
||||
"acc": accuracy,
|
||||
"time": tf - t0,
|
||||
|
||||
"param": [p.item() for p in model['data_aug']['prob']],
|
||||
}
|
||||
log.append(data)
|
||||
#############
|
||||
if val_loss_monitor :
|
||||
val_loss_monitor.register(val_loss.item())
|
||||
if val_loss_monitor.end_training(): break #Stop training
|
||||
|
||||
|
||||
if not model.is_augmenting() and (epoch == dataug_epoch_start or (val_loss_monitor and val_loss_monitor.limit_reached()==1)):
|
||||
print('Starting Data Augmention...')
|
||||
dataug_epoch_start = epoch
|
||||
model.augment(mode=True)
|
||||
if inner_it != 0: high_grad_track = True
|
||||
|
||||
#print("Copy ", countcopy)
|
||||
return log
|
||||
|
||||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
@ -761,7 +64,7 @@ if __name__ == "__main__":
|
|||
print('-'*9)
|
||||
'''
|
||||
#### Augmented Model ####
|
||||
'''
|
||||
#'''
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#tf_dict = TF.TF_dict
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
|
@ -779,9 +82,9 @@ if __name__ == "__main__":
|
|||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
'''
|
||||
#### TF number tests ####
|
||||
#'''
|
||||
#### TF number tests ####
|
||||
'''
|
||||
res_folder="res/TF_nb_tests/"
|
||||
epochs= 100
|
||||
inner_its = [10]
|
||||
|
@ -821,6 +124,6 @@ if __name__ == "__main__":
|
|||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
|
||||
#'''
|
||||
'''
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue