mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Rangement dans le code 2
This commit is contained in:
parent
bd70efab96
commit
bc8e5f2817
37 changed files with 26624 additions and 0 deletions
47
higher/datasets.py
Normal file
47
higher/datasets.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import torch
|
||||
from torch.utils.data import SubsetRandomSampler
|
||||
import torchvision
|
||||
|
||||
BATCH_SIZE = 300
|
||||
#TEST_SIZE = 300
|
||||
TEST_SIZE = 10000
|
||||
|
||||
#ATTENTION : Dataug (Kornia) Expect image in the range of [0, 1]
|
||||
#transform_train = torchvision.transforms.Compose([
|
||||
# torchvision.transforms.RandomHorizontalFlip(),
|
||||
# torchvision.transforms.ToTensor(),
|
||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
#])
|
||||
transform = torchvision.transforms.Compose([
|
||||
torchvision.transforms.ToTensor(),
|
||||
#torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), #CIFAR10
|
||||
])
|
||||
'''
|
||||
data_train = torchvision.datasets.MNIST(
|
||||
"./data", train=True, download=True,
|
||||
transform=torchvision.transforms.Compose([
|
||||
#torchvision.transforms.RandomAffine(degrees=180, translate=None, scale=None, shear=None, resample=False, fillcolor=0),
|
||||
torchvision.transforms.ToTensor()
|
||||
])
|
||||
)
|
||||
data_test = torchvision.datasets.MNIST(
|
||||
"./data", train=False, download=True, transform=torchvision.transforms.ToTensor()
|
||||
)
|
||||
'''
|
||||
data_train = torchvision.datasets.CIFAR10(
|
||||
"./data", train=True, download=True, transform=transform
|
||||
)
|
||||
#data_val = torchvision.datasets.CIFAR10(
|
||||
# "./data", train=True, download=True, transform=transform
|
||||
#)
|
||||
data_test = torchvision.datasets.CIFAR10(
|
||||
"./data", train=False, download=True, transform=transform
|
||||
)
|
||||
#'''
|
||||
train_subset_indices=range(int(len(data_train)/2))
|
||||
#train_subset_indices=range(BATCH_SIZE*10)
|
||||
val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
||||
|
||||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices))
|
||||
dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices))
|
||||
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False)
|
Loading…
Add table
Add a link
Reference in a new issue