mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
work in progress - validation brutus res
This commit is contained in:
parent
f8cc38dd6b
commit
bb59c7de25
8 changed files with 4278 additions and 4278 deletions
|
@ -2,11 +2,11 @@ from utils import *
|
|||
|
||||
if __name__ == "__main__":
|
||||
|
||||
'''
|
||||
#'''
|
||||
files=[
|
||||
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
||||
#"res/good_TF_tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
||||
#"res/brutus-tests/log/Aug_mod(Data_augV5(Mix0.5-14TFx1-Mag)-LeNet)-150epochs(dataug:0)-1in_it-0.json",
|
||||
"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-0in_it-0.json",
|
||||
#"res/log/Aug_mod(RandAugUDA(18TFx2-Mag1)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
|
||||
]
|
||||
|
||||
|
@ -16,7 +16,7 @@ if __name__ == "__main__":
|
|||
data = json.load(json_file)
|
||||
plot_resV2(data['Log'], fig_name=file.replace('.json','').replace('log/',''), param_names=data['Param_names'])
|
||||
#plot_TF_influence(data['Log'], param_names=data['Param_names'])
|
||||
'''
|
||||
#'''
|
||||
## Loss , Acc, Proba = f(epoch) ##
|
||||
#plot_compare(filenames=files, fig_name="res/compare")
|
||||
|
||||
|
@ -76,11 +76,11 @@ if __name__ == "__main__":
|
|||
'''
|
||||
|
||||
#Res print
|
||||
#'''
|
||||
'''
|
||||
nb_run=3
|
||||
accs = []
|
||||
times = []
|
||||
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Mix1-14TFx4-Mag)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
|
||||
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
|
||||
|
||||
for idx, file in enumerate(files):
|
||||
#legend+=str(idx)+'-'+file+'\n'
|
||||
|
@ -90,4 +90,4 @@ if __name__ == "__main__":
|
|||
times.append(data['Time'][0])
|
||||
|
||||
print(files[0], np.mean(accs), np.std(accs), np.mean(times))
|
||||
#'''
|
||||
'''
|
|
@ -694,7 +694,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
|||
|
||||
import numpy as np
|
||||
class Data_augV6(nn.Module): #Optimisation sequentielle
|
||||
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True):
|
||||
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=None, fixed_mag=True, shared_mag=True):
|
||||
super(Data_augV6, self).__init__()
|
||||
assert len(TF_dict)>0
|
||||
|
||||
|
@ -708,8 +708,9 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
self._shared_mag = shared_mag
|
||||
self._fixed_mag = fixed_mag
|
||||
|
||||
self._TF_set_size=3
|
||||
self._fixed_TF=[0]
|
||||
self._TF_set_size = prob_set_size if prob_set_size else self._nb_tf
|
||||
|
||||
self._fixed_TF=[0] #Identite
|
||||
assert self._TF_set_size>=len(self._fixed_TF)
|
||||
|
||||
if self._TF_set_size>self._nb_tf:
|
||||
|
@ -723,7 +724,6 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
else:
|
||||
def generate_TF_sets(n_TF, set_size, idx_prefix=[]):
|
||||
TF_sets=[]
|
||||
print(set_size, idx_prefix)
|
||||
if len(idx_prefix)!=0:
|
||||
if set_size>2:
|
||||
for i in range(idx_prefix[-1]+1, n_TF):
|
||||
|
@ -739,12 +739,12 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
return TF_sets
|
||||
|
||||
self._TF_sets=generate_TF_sets(self._nb_tf, self._TF_set_size, self._fixed_TF)
|
||||
|
||||
|
||||
## Plan TF learning schedule ##
|
||||
self._TF_schedule = [list(range(len(self._TF_sets))) for _ in range(self._N_seqTF)]
|
||||
for n_tf in range(self._N_seqTF) :
|
||||
TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
#print(self._TF_schedule)
|
||||
|
||||
self._current_TF_idx=0 #random.randint
|
||||
self._start_prob = 1/self._TF_set_size
|
||||
|
||||
|
@ -881,12 +881,11 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
self._current_TF_idx=idx
|
||||
else:
|
||||
self._current_TF_idx+=1
|
||||
if self._current_TF_idx== len(self._TF_schedule[0]):
|
||||
self._current_TF_idx=0
|
||||
#for n_tf in range(self._N_seqTF) :
|
||||
# TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
#print(self._TF_schedule)
|
||||
#print("Current TF :",self._TF_sets[self._current_TF_idx])
|
||||
|
||||
if self._current_TF_idx>=len(self._TF_schedule[0]):
|
||||
self._current_TF_idx=0
|
||||
for n_tf in range(self._N_seqTF) :
|
||||
TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
|
||||
def train(self, mode=None):
|
||||
if mode is None :
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 276 KiB After Width: | Height: | Size: 270 KiB |
Binary file not shown.
Before Width: | Height: | Size: 294 KiB After Width: | Height: | Size: 288 KiB |
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -10,17 +10,17 @@ tf_names = [
|
|||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
#'TranslateY',
|
||||
#'ShearX',
|
||||
#'ShearY',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
#'Contrast',
|
||||
#'Color',
|
||||
#'Brightness',
|
||||
#'Sharpness',
|
||||
#'Posterize',
|
||||
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
#Color TF (Common mag scale)
|
||||
#'+Contrast',
|
||||
|
@ -64,8 +64,8 @@ else:
|
|||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
n_inner_iter = 10
|
||||
epochs = 100
|
||||
n_inner_iter = 1
|
||||
epochs = 200
|
||||
dataug_epoch_start=0
|
||||
|
||||
#### Classic ####
|
||||
|
@ -95,7 +95,8 @@ if __name__ == "__main__":
|
|||
t0 = time.process_time()
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#tf_dict = TF.TF_dict
|
||||
aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
|
|
|
@ -618,7 +618,7 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
|
|||
|
||||
meta_opt.step()
|
||||
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
||||
model['data_aug'].next_TF_set()
|
||||
#model['data_aug'].next_TF_set()
|
||||
|
||||
fmodel = higher.patch.monkeypatch(model, device=None, copy_initial_weights=True)
|
||||
diffopt = higher.optim.get_diff_optim(inner_opt, model.parameters(),fmodel=fmodel, track_higher_grads=high_grad_track)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue