mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
work in progress - validation brutus res
This commit is contained in:
parent
f8cc38dd6b
commit
bb59c7de25
8 changed files with 4278 additions and 4278 deletions
|
@ -10,17 +10,17 @@ tf_names = [
|
|||
'FlipLR',
|
||||
'Rotate',
|
||||
'TranslateX',
|
||||
#'TranslateY',
|
||||
#'ShearX',
|
||||
#'ShearY',
|
||||
'TranslateY',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
#'Contrast',
|
||||
#'Color',
|
||||
#'Brightness',
|
||||
#'Sharpness',
|
||||
#'Posterize',
|
||||
#'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'Posterize',
|
||||
'Solarize', #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
#Color TF (Common mag scale)
|
||||
#'+Contrast',
|
||||
|
@ -64,8 +64,8 @@ else:
|
|||
##########################################
|
||||
if __name__ == "__main__":
|
||||
|
||||
n_inner_iter = 10
|
||||
epochs = 100
|
||||
n_inner_iter = 1
|
||||
epochs = 200
|
||||
dataug_epoch_start=0
|
||||
|
||||
#### Classic ####
|
||||
|
@ -95,7 +95,8 @@ if __name__ == "__main__":
|
|||
t0 = time.process_time()
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#tf_dict = TF.TF_dict
|
||||
aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV6(TF_dict=tf_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=2, fixed_mag=True, shared_mag=True), LeNet(3,10)).to(device)
|
||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), LeNet(3,10)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5, fixed_mag=True, shared_mag=True), WideResNet(num_classes=10, wrn_size=160)).to(device)
|
||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue