mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
work in progress - validation brutus res
This commit is contained in:
parent
f8cc38dd6b
commit
bb59c7de25
8 changed files with 4278 additions and 4278 deletions
|
@ -694,7 +694,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
|||
|
||||
import numpy as np
|
||||
class Data_augV6(nn.Module): #Optimisation sequentielle
|
||||
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, fixed_mag=True, shared_mag=True):
|
||||
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mix_dist=0.0, fixed_prob=False, prob_set_size=None, fixed_mag=True, shared_mag=True):
|
||||
super(Data_augV6, self).__init__()
|
||||
assert len(TF_dict)>0
|
||||
|
||||
|
@ -708,8 +708,9 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
self._shared_mag = shared_mag
|
||||
self._fixed_mag = fixed_mag
|
||||
|
||||
self._TF_set_size=3
|
||||
self._fixed_TF=[0]
|
||||
self._TF_set_size = prob_set_size if prob_set_size else self._nb_tf
|
||||
|
||||
self._fixed_TF=[0] #Identite
|
||||
assert self._TF_set_size>=len(self._fixed_TF)
|
||||
|
||||
if self._TF_set_size>self._nb_tf:
|
||||
|
@ -723,7 +724,6 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
else:
|
||||
def generate_TF_sets(n_TF, set_size, idx_prefix=[]):
|
||||
TF_sets=[]
|
||||
print(set_size, idx_prefix)
|
||||
if len(idx_prefix)!=0:
|
||||
if set_size>2:
|
||||
for i in range(idx_prefix[-1]+1, n_TF):
|
||||
|
@ -739,12 +739,12 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
return TF_sets
|
||||
|
||||
self._TF_sets=generate_TF_sets(self._nb_tf, self._TF_set_size, self._fixed_TF)
|
||||
|
||||
|
||||
## Plan TF learning schedule ##
|
||||
self._TF_schedule = [list(range(len(self._TF_sets))) for _ in range(self._N_seqTF)]
|
||||
for n_tf in range(self._N_seqTF) :
|
||||
TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
#print(self._TF_schedule)
|
||||
|
||||
self._current_TF_idx=0 #random.randint
|
||||
self._start_prob = 1/self._TF_set_size
|
||||
|
||||
|
@ -881,12 +881,11 @@ class Data_augV6(nn.Module): #Optimisation sequentielle
|
|||
self._current_TF_idx=idx
|
||||
else:
|
||||
self._current_TF_idx+=1
|
||||
if self._current_TF_idx== len(self._TF_schedule[0]):
|
||||
self._current_TF_idx=0
|
||||
#for n_tf in range(self._N_seqTF) :
|
||||
# TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
#print(self._TF_schedule)
|
||||
#print("Current TF :",self._TF_sets[self._current_TF_idx])
|
||||
|
||||
if self._current_TF_idx>=len(self._TF_schedule[0]):
|
||||
self._current_TF_idx=0
|
||||
for n_tf in range(self._N_seqTF) :
|
||||
TF.random.shuffle(self._TF_schedule[n_tf])
|
||||
|
||||
def train(self, mode=None):
|
||||
if mode is None :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue