Changes since Teledyne

This commit is contained in:
Antoine Harlé 2024-08-20 11:53:35 +02:00 committed by AntoineH
parent 03ffd7fe05
commit b89dac9084
185 changed files with 16668 additions and 484 deletions

View file

@ -0,0 +1,56 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
## Basic CNN ##
class LeNet(nn.Module):
"""Basic CNN.
"""
def __init__(self, num_inp, num_out):
"""Init LeNet.
"""
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(num_inp, 20, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(20, 50, 5)
self.pool2 = nn.MaxPool2d(2, 2)
#self.fc1 = nn.Linear(4*4*50, 500)
self.fc1 = nn.Linear(5*5*50, 500)
self.fc2 = nn.Linear(500, num_out)
def forward(self, x):
"""Main method of LeNet
"""
x = self.pool(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def __str__(self):
""" Get name of model
"""
return "LeNet"
#MNIST
class MLPNet(nn.Module):
def __init__(self):
super(MLPNet, self).__init__()
self.fc1 = nn.Linear(28*28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def name(self):
return "MLP"

View file

@ -0,0 +1,426 @@
import torch
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url
# __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
# 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
# 'wide_resnet50_2', 'wide_resnet101_2']
# model_urls = {
# 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
# 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
# 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
# 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
# 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
# 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
# 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
# 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
# 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
# }
__all__ = ['ResNet_ABN', 'resnet18_ABN', 'resnet34_ABN', 'resnet50_ABN', 'resnet101_ABN',
'resnet152_ABN', 'resnext50_32x4d_ABN', 'resnext101_32x8d_ABN',
'wide_resnet50_2_ABN', 'wide_resnet101_2_ABN']
class aux_batchNorm(nn.Module):
def __init__(self, norm_layer, nb_features):
super(aux_batchNorm, self).__init__()
self.mode='clean'
self.bn=nn.ModuleDict({
'clean': norm_layer(nb_features),
'augmented': norm_layer(nb_features)
})
def forward(self, x):
if self.mode is 'mixed':
running_mean=(self.bn['clean'].running_mean+self.bn['augmented'].running_mean)/2
running_var=(self.bn['clean'].running_var+self.bn['augmented'].running_var)/2
return nn.functional.batch_norm(x, running_mean, running_var, self.bn['clean'].weight, self.bn['clean'].bias)
return self.bn[self.mode](x)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock_ABN(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock_ABN, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
#self.bn1 = norm_layer(planes)
self.bn1 = aux_batchNorm(norm_layer, planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
#self.bn2 = norm_layer(planes)
self.bn2 = aux_batchNorm(norm_layer, planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck_ABN(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck_ABN, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
#self.bn1 = norm_layer(width)
self.bn1 = aux_batchNorm(norm_layer, width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
# self.bn2 = norm_layer(width)
self.bn2 = aux_batchNorm(norm_layer, width)
self.conv3 = conv1x1(width, planes * self.expansion)
# self.bn3 = norm_layer(planes * self.expansion)
self.bn3 = aux_batchNorm(norm_layer, planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet_ABN(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet_ABN, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
#self.bn1 = norm_layer(self.inplanes)
self.bn1 = aux_batchNorm(norm_layer, self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
print('WARNING : zero_init_residual not implemented with ABN')
# for m in self.modules():
# if isinstance(m, Bottleneck):
# nn.init.constant_(m.bn3.weight, 0)
# elif isinstance(m, BasicBlock):
# nn.init.constant_(m.bn2.weight, 0)
# Memoire des BN layers pas fonctinnel avec Higher
# self.bn_layers=[]
# for m in self.modules():
# if isinstance(m, aux_batchNorm):
# self.bn_layers.append(m)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
#norm_layer(planes * block.expansion),
aux_batchNorm(norm_layer, planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
return self._forward_impl(x)
def set_mode(self, mode):
# for bn in self.bn_layers:
for m in self.modules():
if isinstance(m, aux_batchNorm):
m.mode=mode
# def _resnet(arch, block, layers, pretrained, progress, **kwargs):
# model = ResNet(block, layers, **kwargs)
# if pretrained:
# state_dict = load_state_dict_from_url(model_urls[arch],
# progress=progress)
# model.load_state_dict(state_dict)
# return model
def resnet18_ABN(pretrained=False, progress=True, **kwargs):
"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
# return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
# **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(BasicBlock_ABN, [2, 2, 2, 2], **kwargs)
def resnet34_ABN(pretrained=False, progress=True, **kwargs):
"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
# return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
# **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(BasicBlock_ABN, [3, 4, 6, 3], **kwargs)
def resnet50_ABN(pretrained=False, progress=True, **kwargs):
"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
# return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
# **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 6, 3], **kwargs)
def resnet101_ABN(pretrained=False, progress=True, **kwargs):
"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
# return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
# **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 23, 3], **kwargs)
def resnet152_ABN(pretrained=False, progress=True, **kwargs):
"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
# return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
# **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 8, 36, 3], **kwargs)
def resnext50_32x4d_ABN(pretrained=False, progress=True, **kwargs):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
# return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
# pretrained, progress, **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 6, 3], **kwargs)
def resnext101_32x8d_ABN(pretrained=False, progress=True, **kwargs):
"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
# return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
# pretrained, progress, **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 23, 3], **kwargs)
def wide_resnet50_2_ABN(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
# return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
# pretrained, progress, **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 6, 3], **kwargs)
def wide_resnet101_2_ABN(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
# return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
# pretrained, progress, **kwargs)
if(pretrained):
print('WARNING: pretrained weight support not implemented for Auxiliary Batch Norm')
return ResNet_ABN(Bottleneck_ABN, [3, 4, 23, 3], **kwargs)

View file

@ -0,0 +1,618 @@
'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
https://github.com/yechengxi/deconvolution
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules import conv
from torch.nn.modules.utils import _pair
from functools import partial
__all__ = ['ResNet18_DC', 'ResNet34_DC', 'ResNet50_DC', 'ResNet101_DC', 'ResNet152_DC', 'WRN_DC26_10']
### Deconvolution ###
#iteratively solve for inverse sqrt of a matrix
def isqrt_newton_schulz_autograd(A, numIters):
dim = A.shape[0]
normA=A.norm()
Y = A.div(normA)
I = torch.eye(dim,dtype=A.dtype,device=A.device)
Z = torch.eye(dim,dtype=A.dtype,device=A.device)
for i in range(numIters):
T = 0.5*(3.0*I - Z@Y)
Y = Y@T
Z = T@Z
#A_sqrt = Y*torch.sqrt(normA)
A_isqrt = Z / torch.sqrt(normA)
return A_isqrt
def isqrt_newton_schulz_autograd_batch(A, numIters):
batchSize,dim,_ = A.shape
normA=A.view(batchSize, -1).norm(2, 1).view(batchSize, 1, 1)
Y = A.div(normA)
I = torch.eye(dim,dtype=A.dtype,device=A.device).unsqueeze(0).expand_as(A)
Z = torch.eye(dim,dtype=A.dtype,device=A.device).unsqueeze(0).expand_as(A)
for i in range(numIters):
T = 0.5*(3.0*I - Z.bmm(Y))
Y = Y.bmm(T)
Z = T.bmm(Z)
#A_sqrt = Y*torch.sqrt(normA)
A_isqrt = Z / torch.sqrt(normA)
return A_isqrt
#deconvolve channels
class ChannelDeconv(nn.Module):
def __init__(self, block, eps=1e-2,n_iter=5,momentum=0.1,sampling_stride=3):
super(ChannelDeconv, self).__init__()
self.eps = eps
self.n_iter=n_iter
self.momentum=momentum
self.block = block
self.register_buffer('running_mean1', torch.zeros(block, 1))
#self.register_buffer('running_cov', torch.eye(block))
self.register_buffer('running_deconv', torch.eye(block))
self.register_buffer('running_mean2', torch.zeros(1, 1))
self.register_buffer('running_var', torch.ones(1, 1))
self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long))
self.sampling_stride=sampling_stride
def forward(self, x):
x_shape = x.shape
if len(x.shape)==2:
x=x.view(x.shape[0],x.shape[1],1,1)
if len(x.shape)==3:
print('Error! Unsupprted tensor shape.')
N, C, H, W = x.size()
B = self.block
#take the first c channels out for deconv
c=int(C/B)*B
if c==0:
print('Error! block should be set smaller.')
#step 1. remove mean
if c!=C:
x1=x[:,:c].permute(1,0,2,3).contiguous().view(B,-1)
else:
x1=x.permute(1,0,2,3).contiguous().view(B,-1)
if self.sampling_stride > 1 and H >= self.sampling_stride and W >= self.sampling_stride:
x1_s = x1[:,::self.sampling_stride**2]
else:
x1_s=x1
mean1 = x1_s.mean(-1, keepdim=True)
if self.num_batches_tracked==0:
self.running_mean1.copy_(mean1.detach())
if self.training:
self.running_mean1.mul_(1-self.momentum)
self.running_mean1.add_(mean1.detach()*self.momentum)
else:
mean1 = self.running_mean1
x1=x1-mean1
#step 2. calculate deconv@x1 = cov^(-0.5)@x1
if self.training:
cov = x1_s @ x1_s.t() / x1_s.shape[1] + self.eps * torch.eye(B, dtype=x.dtype, device=x.device)
deconv = isqrt_newton_schulz_autograd(cov, self.n_iter)
if self.num_batches_tracked==0:
#self.running_cov.copy_(cov.detach())
self.running_deconv.copy_(deconv.detach())
if self.training:
#self.running_cov.mul_(1-self.momentum)
#self.running_cov.add_(cov.detach()*self.momentum)
self.running_deconv.mul_(1 - self.momentum)
self.running_deconv.add_(deconv.detach() * self.momentum)
else:
# cov = self.running_cov
deconv = self.running_deconv
x1 =deconv@x1
#reshape to N,c,J,W
x1 = x1.view(c, N, H, W).contiguous().permute(1,0,2,3)
# normalize the remaining channels
if c!=C:
x_tmp=x[:, c:].view(N,-1)
if self.sampling_stride > 1 and H>=self.sampling_stride and W>=self.sampling_stride:
x_s = x_tmp[:, ::self.sampling_stride ** 2]
else:
x_s = x_tmp
mean2=x_s.mean()
var=x_s.var()
if self.num_batches_tracked == 0:
self.running_mean2.copy_(mean2.detach())
self.running_var.copy_(var.detach())
if self.training:
self.running_mean2.mul_(1 - self.momentum)
self.running_mean2.add_(mean2.detach() * self.momentum)
self.running_var.mul_(1 - self.momentum)
self.running_var.add_(var.detach() * self.momentum)
else:
mean2 = self.running_mean2
var = self.running_var
x_tmp = (x[:, c:] - mean2) / (var + self.eps).sqrt()
x1 = torch.cat([x1, x_tmp], dim=1)
if self.training:
self.num_batches_tracked.add_(1)
if len(x_shape)==2:
x1=x1.view(x_shape)
return x1
#An alternative implementation
class Delinear(nn.Module):
__constants__ = ['bias', 'in_features', 'out_features']
def __init__(self, in_features, out_features, bias=True, eps=1e-5, n_iter=5, momentum=0.1, block=512):
super(Delinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
if block > in_features:
block = in_features
else:
if in_features%block!=0:
block=math.gcd(block,in_features)
print('block size set to:', block)
self.block = block
self.momentum = momentum
self.n_iter = n_iter
self.eps = eps
self.register_buffer('running_mean', torch.zeros(self.block))
self.register_buffer('running_deconv', torch.eye(self.block))
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
if self.training:
# 1. reshape
X=input.view(-1, self.block)
# 2. subtract mean
X_mean = X.mean(0)
X = X - X_mean.unsqueeze(0)
self.running_mean.mul_(1 - self.momentum)
self.running_mean.add_(X_mean.detach() * self.momentum)
# 3. calculate COV, COV^(-0.5), then deconv
# Cov = X.t() @ X / X.shape[0] + self.eps * torch.eye(X.shape[1], dtype=X.dtype, device=X.device)
Id = torch.eye(X.shape[1], dtype=X.dtype, device=X.device)
Cov = torch.addmm(self.eps, Id, 1. / X.shape[0], X.t(), X)
deconv = isqrt_newton_schulz_autograd(Cov, self.n_iter)
# track stats for evaluation
self.running_deconv.mul_(1 - self.momentum)
self.running_deconv.add_(deconv.detach() * self.momentum)
else:
X_mean = self.running_mean
deconv = self.running_deconv
w = self.weight.view(-1, self.block) @ deconv
b = self.bias
if self.bias is not None:
b = b - (w @ (X_mean.unsqueeze(1))).view(self.weight.shape[0], -1).sum(1)
w = w.view(self.weight.shape)
return F.linear(input, w, b)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class FastDeconv(conv._ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,groups=1,bias=True, eps=1e-5, n_iter=5, momentum=0.1, block=64, sampling_stride=3,freeze=False,freeze_iter=100):
self.momentum = momentum
self.n_iter = n_iter
self.eps = eps
self.counter=0
self.track_running_stats=True
super(FastDeconv, self).__init__(
in_channels, out_channels, _pair(kernel_size), _pair(stride), _pair(padding), _pair(dilation),
False, _pair(0), groups, bias, padding_mode='zeros')
if block > in_channels:
block = in_channels
else:
if in_channels%block!=0:
block=math.gcd(block,in_channels)
if groups>1:
#grouped conv
block=in_channels//groups
self.block=block
self.num_features = kernel_size**2 *block
if groups==1:
self.register_buffer('running_mean', torch.zeros(self.num_features))
self.register_buffer('running_deconv', torch.eye(self.num_features))
else:
self.register_buffer('running_mean', torch.zeros(kernel_size ** 2 * in_channels))
self.register_buffer('running_deconv', torch.eye(self.num_features).repeat(in_channels // block, 1, 1))
self.sampling_stride=sampling_stride*stride
self.counter=0
self.freeze_iter=freeze_iter
self.freeze=freeze
def forward(self, x):
N, C, H, W = x.shape
B = self.block
frozen=self.freeze and (self.counter>self.freeze_iter)
if self.training and self.track_running_stats:
self.counter+=1
self.counter %= (self.freeze_iter * 10)
if self.training and (not frozen):
# 1. im2col: N x cols x pixels -> N*pixles x cols
if self.kernel_size[0]>1:
X = torch.nn.functional.unfold(x, self.kernel_size,self.dilation,self.padding,self.sampling_stride).transpose(1, 2).contiguous()
else:
#channel wise
X = x.permute(0, 2, 3, 1).contiguous().view(-1, C)[::self.sampling_stride**2,:]
if self.groups==1:
# (C//B*N*pixels,k*k*B)
X = X.view(-1, self.num_features, C // B).transpose(1, 2).contiguous().view(-1, self.num_features)
else:
X=X.view(-1,X.shape[-1])
# 2. subtract mean
X_mean = X.mean(0)
X = X - X_mean.unsqueeze(0)
# 3. calculate COV, COV^(-0.5), then deconv
if self.groups==1:
#Cov = X.t() @ X / X.shape[0] + self.eps * torch.eye(X.shape[1], dtype=X.dtype, device=X.device)
Id=torch.eye(X.shape[1], dtype=X.dtype, device=X.device)
Cov = torch.addmm(self.eps, Id, 1. / X.shape[0], X.t(), X)
deconv = isqrt_newton_schulz_autograd(Cov, self.n_iter)
else:
X = X.view(-1, self.groups, self.num_features).transpose(0, 1)
Id = torch.eye(self.num_features, dtype=X.dtype, device=X.device).expand(self.groups, self.num_features, self.num_features)
Cov = torch.baddbmm(self.eps, Id, 1. / X.shape[1], X.transpose(1, 2), X)
deconv = isqrt_newton_schulz_autograd_batch(Cov, self.n_iter)
if self.track_running_stats:
self.running_mean.mul_(1 - self.momentum)
self.running_mean.add_(X_mean.detach() * self.momentum)
# track stats for evaluation
self.running_deconv.mul_(1 - self.momentum)
self.running_deconv.add_(deconv.detach() * self.momentum)
else:
X_mean = self.running_mean
deconv = self.running_deconv
#4. X * deconv * conv = X * (deconv * conv)
if self.groups==1:
w = self.weight.view(-1, self.num_features, C // B).transpose(1, 2).contiguous().view(-1,self.num_features) @ deconv
b = self.bias - (w @ (X_mean.unsqueeze(1))).view(self.weight.shape[0], -1).sum(1)
w = w.view(-1, C // B, self.num_features).transpose(1, 2).contiguous()
else:
w = self.weight.view(C//B, -1,self.num_features)@deconv
b = self.bias - (w @ (X_mean.view( -1,self.num_features,1))).view(self.bias.shape)
w = w.view(self.weight.shape)
x= F.conv2d(x, w, b, self.stride, self.padding, self.dilation, self.groups)
return x
### ResNet
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, deconv=None):
super(BasicBlock, self).__init__()
if deconv:
self.conv1 = deconv(in_planes, planes, kernel_size=3, stride=stride, padding=1)
self.conv2 = deconv(planes, planes, kernel_size=3, stride=1, padding=1)
self.deconv = True
else:
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.deconv = False
self.shortcut = nn.Sequential()
if not deconv:
self.bn1 = nn.BatchNorm2d(planes)
self.bn2 = nn.BatchNorm2d(planes)
#self.bn1 = nn.GroupNorm(planes//16,planes)
#self.bn2 = nn.GroupNorm(planes//16,planes)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
#nn.GroupNorm(self.expansion * planes//16,self.expansion * planes)
)
else:
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
deconv(in_planes, self.expansion*planes, kernel_size=1, stride=stride)
)
def forward(self, x):
if self.deconv:
out = F.relu(self.conv1(x))
out = self.conv2(out)
out += self.shortcut(x)
out = F.relu(out)
return out
else: #self.batch_norm:
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, deconv=None):
super(Bottleneck, self).__init__()
if deconv:
self.deconv = True
self.conv1 = deconv(in_planes, planes, kernel_size=1)
self.conv2 = deconv(planes, planes, kernel_size=3, stride=stride, padding=1)
self.conv3 = deconv(planes, self.expansion*planes, kernel_size=1)
else:
self.deconv = False
self.bn1 = nn.BatchNorm2d(planes)
self.bn2 = nn.BatchNorm2d(planes)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.shortcut = nn.Sequential()
if not deconv:
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
else:
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
deconv(in_planes, self.expansion * planes, kernel_size=1, stride=stride)
)
def forward(self, x):
"""
No batch normalization for deconv.
"""
if self.deconv:
out = F.relu((self.conv1(x)))
out = F.relu((self.conv2(out)))
out = self.conv3(out)
out += self.shortcut(x)
out = F.relu(out)
return out
else:
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, deconv=None,channel_deconv=None):
super(ResNet, self).__init__()
self.in_planes = 64
if deconv:
self.deconv = True
self.conv1 = deconv(3, 64, kernel_size=3, stride=1, padding=1)
else:
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
if not deconv:
self.bn1 = nn.BatchNorm2d(64)
#this line is really recent, take extreme care if the result is not good.
if channel_deconv:
self.deconv1=channel_deconv()
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, deconv=deconv)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, deconv=deconv)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, deconv=deconv)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, deconv=deconv)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride, deconv):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, deconv))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
if hasattr(self,'bn1'):
out = F.relu(self.bn1(self.conv1(x)))
else:
out = F.relu(self.conv1(x))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
if hasattr(self, 'deconv1'):
out = self.deconv1(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def_deconv = partial(FastDeconv,bias=True, eps=1e-5, n_iter=5,block=64,sampling_stride=3)
#channel_deconv=partial(ChannelDeconv, block=512,eps=1e-5, n_iter=5,sampling_stride=3) #Pas forcément conseillé
def ResNet18_DC(num_classes,deconv=def_deconv,channel_deconv=None):
return ResNet(BasicBlock, [2,2,2,2],num_classes=num_classes, deconv=deconv,channel_deconv=channel_deconv)
def ResNet34_DC(num_classes,deconv=def_deconv,channel_deconv=None):
return ResNet(BasicBlock, [3,4,6,3], num_classes=num_classes, deconv=deconv,channel_deconv=channel_deconv)
def ResNet50_DC(num_classes,deconv=def_deconv,channel_deconv=None):
return ResNet(Bottleneck, [3,4,6,3], num_classes=num_classes, deconv=deconv,channel_deconv=channel_deconv)
def ResNet101_DC(num_classes,deconv=def_deconv,channel_deconv=None):
return ResNet(Bottleneck, [3,4,23,3], num_classes=num_classes, deconv=deconv,channel_deconv=channel_deconv)
def ResNet152_DC(num_classes,deconv=def_deconv,channel_deconv=None):
return ResNet(Bottleneck, [3,8,36,3], num_classes=num_classes, deconv=deconv,channel_deconv=channel_deconv)
import math
class Wide_ResNet_Cifar_DC(nn.Module):
def __init__(self, block, layers, wfactor, num_classes=10, deconv=None, channel_deconv=None):
super(Wide_ResNet_Cifar_DC, self).__init__()
self.depth=layers[0]*6+2
self.widen_factor=wfactor
self.inplanes = 16
self.conv1 = deconv(3, 16, kernel_size=3, stride=1, padding=1)
if channel_deconv:
self.deconv1=channel_deconv()
# self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
# self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16*wfactor, layers[0], stride=1, deconv=deconv)
self.layer2 = self._make_layer(block, 32*wfactor, layers[1], stride=2, deconv=deconv)
self.layer3 = self._make_layer(block, 64*wfactor, layers[2], stride=2, deconv=deconv)
self.avgpool = nn.AvgPool2d(8, stride=1)
self.fc = nn.Linear(64*block.expansion*wfactor, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, num_blocks, stride, deconv):
# downsample = None
# if stride != 1 or self.inplanes != planes * block.expansion:
# downsample = nn.Sequential(
# nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
# nn.BatchNorm2d(planes * block.expansion)
# )
# layers = []
# layers.append(block(self.inplanes, planes, stride, downsample))
# self.inplanes = planes * block.expansion
# for _ in range(1, blocks):
# layers.append(block(self.inplanes, planes))
# return nn.Sequential(*layers)
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.inplanes, planes, stride, deconv))
self.inplanes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
# x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if hasattr(self, 'deconv1'):
out = self.deconv1(out)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def __str__(self):
""" Get name of model
"""
return "Wide_ResNet_cifar_DC%d_%d"%(self.depth,self.widen_factor)
def WRN_DC26_10(depth=26, width=10, deconv=def_deconv, channel_deconv=None, **kwargs):
assert (depth - 2) % 6 == 0
n = int((depth - 2) / 6)
return Wide_ResNet_Cifar_DC(BasicBlock, [n, n, n], width, deconv=deconv,channel_deconv=channel_deconv, **kwargs)
def test():
net = ResNet18_DC()
y = net(torch.randn(1,3,32,32))
print(y.size())
# test()

View file

@ -0,0 +1,98 @@
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np
_bn_momentum = 0.1
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True)
def conv_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_uniform_(m.weight, gain=np.sqrt(2))
init.constant_(m.bias, 0)
elif classname.find('BatchNorm') != -1:
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
class WideBasic(nn.Module):
def __init__(self, in_planes, planes, dropout_rate, stride=1):
super(WideBasic, self).__init__()
assert dropout_rate==0.0, 'dropout layer not used'
self.bn1 = nn.BatchNorm2d(in_planes, momentum=_bn_momentum)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, bias=True)
#self.dropout = nn.Dropout(p=dropout_rate)
self.bn2 = nn.BatchNorm2d(planes, momentum=_bn_momentum)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True),
)
def forward(self, x):
# out = self.dropout(self.conv1(F.relu(self.bn1(x))))
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
out += self.shortcut(x)
return out
class WideResNet(nn.Module):
def __init__(self, depth, widen_factor, dropout_rate, num_classes):
super(WideResNet, self).__init__()
self.depth=depth
self.widen_factor=widen_factor
self.in_planes = 16
assert ((depth - 4) % 6 == 0), 'Wide-resnet depth should be 6n+4'
n = int((depth - 4) / 6)
k = widen_factor
nStages = [16, 16*k, 32*k, 64*k]
self.conv1 = conv3x3(3, nStages[0])
self.layer1 = self._wide_layer(WideBasic, nStages[1], n, dropout_rate, stride=1)
self.layer2 = self._wide_layer(WideBasic, nStages[2], n, dropout_rate, stride=2)
self.layer3 = self._wide_layer(WideBasic, nStages[3], n, dropout_rate, stride=2)
self.bn1 = nn.BatchNorm2d(nStages[3], momentum=_bn_momentum)
self.linear = nn.Linear(nStages[3], num_classes)
# self.apply(conv_init)
def _wide_layer(self, block, planes, num_blocks, dropout_rate, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, dropout_rate, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
# out = F.avg_pool2d(out, 8)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def __str__(self):
""" Get name of model
"""
return "Wide_ResNet%d_%d"%(self.depth,self.widen_factor)

View file

@ -0,0 +1,119 @@
"""
wide resnet for cifar in pytorch
Reference:
[1] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.
"""
import torch
import torch.nn as nn
import math
#from models.resnet_cifar import BasicBlock
def conv3x3(in_planes, out_planes, stride=1):
" 3x3 convolution with padding "
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion=1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Wide_ResNet_Cifar(nn.Module):
def __init__(self, block, layers, wfactor, num_classes=10):
super(Wide_ResNet_Cifar, self).__init__()
self.depth=layers[0]*6+2
self.widen_factor=wfactor
self.inplanes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, 16*wfactor, layers[0])
self.layer2 = self._make_layer(block, 32*wfactor, layers[1], stride=2)
self.layer3 = self._make_layer(block, 64*wfactor, layers[2], stride=2)
self.avgpool = nn.AvgPool2d(8, stride=1)
self.fc = nn.Linear(64*block.expansion*wfactor, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def __str__(self):
""" Get name of model
"""
return "Wide_ResNet_cifar%d_%d"%(self.depth,self.widen_factor)
def wide_resnet_cifar(depth, width, **kwargs):
assert (depth - 2) % 6 == 0
n = int((depth - 2) / 6)
return Wide_ResNet_Cifar(BasicBlock, [n, n, n], width, **kwargs)
if __name__=='__main__':
net = wide_resnet_cifar(20, 10)
y = net(torch.randn(1, 3, 32, 32))
print(isinstance(net, Wide_ResNet_Cifar))
print(y.size())