mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Fix cast in Augmented Dataset
This commit is contained in:
parent
2ee8022c2f
commit
adaac437b6
3 changed files with 29 additions and 822 deletions
|
@ -34,6 +34,8 @@ from PIL import Image
|
|||
import augmentation_transforms
|
||||
import numpy as np
|
||||
|
||||
download_data=False
|
||||
|
||||
class AugmentedDataset(VisionDataset):
|
||||
def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None):
|
||||
|
||||
|
@ -63,9 +65,21 @@ class AugmentedDataset(VisionDataset):
|
|||
|
||||
|
||||
self._TF = [
|
||||
'Invert', 'Cutout', 'Sharpness', 'AutoContrast', 'Posterize',
|
||||
'ShearX', 'TranslateX', 'TranslateY', 'ShearY', 'Rotate',
|
||||
'Equalize', 'Contrast', 'Color', 'Solarize', 'Brightness'
|
||||
'Invert',
|
||||
'Cutout',
|
||||
'Sharpness',
|
||||
'AutoContrast',
|
||||
'Posterize',
|
||||
'ShearX',
|
||||
'TranslateX',
|
||||
'TranslateY',
|
||||
'ShearY',
|
||||
'Rotate',
|
||||
'Equalize',
|
||||
'Contrast',
|
||||
'Color',
|
||||
'Solarize',
|
||||
'Brightness'
|
||||
]
|
||||
self._op_list =[]
|
||||
self.prob=0.5
|
||||
|
@ -108,13 +122,13 @@ class AugmentedDataset(VisionDataset):
|
|||
|
||||
for _ in range(aug_copy):
|
||||
chosen_policy = policies[np.random.choice(len(policies))]
|
||||
aug_image = augmentation_transforms.apply_policy(chosen_policy, image)
|
||||
aug_image = augmentation_transforms.apply_policy(chosen_policy, image, use_mean_std=False) #Cast en float image
|
||||
#aug_image = augmentation_transforms.cutout_numpy(aug_image)
|
||||
|
||||
self.unsup_data+=[aug_image]
|
||||
self.unsup_targets+=[self.sup_targets[idx]]
|
||||
|
||||
self.unsup_data=np.array(self.unsup_data).astype(self.sup_data.dtype)
|
||||
self.unsup_data=(np.array(self.unsup_data)*255.).astype(self.sup_data.dtype) #Cast float image to uint8
|
||||
self.data= np.concatenate((self.sup_data, self.unsup_data), axis=0)
|
||||
self.targets= np.concatenate((self.sup_targets, self.unsup_targets), axis=0)
|
||||
|
||||
|
@ -133,12 +147,12 @@ class AugmentedDataset(VisionDataset):
|
|||
return self.dataset_info['length']
|
||||
|
||||
def __str__(self):
|
||||
return "CIFAR10(Sup:{}-Unsup:{})".format(self.dataset_info['sup'], self.dataset_info['unsup'])
|
||||
return "CIFAR10(Sup:{}-Unsup:{}-{}TF)".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF))
|
||||
|
||||
### Classic Dataset ###
|
||||
data_train = torchvision.datasets.CIFAR10("./data", train=True, download=True, transform=transform)
|
||||
#data_val = torchvision.datasets.CIFAR10("./data", train=True, download=True, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10("./data", train=False, download=True, transform=transform)
|
||||
data_train = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform)
|
||||
#data_val = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10("./data", train=False, download=download_data, transform=transform)
|
||||
|
||||
|
||||
train_subset_indices=range(int(len(data_train)/2))
|
||||
|
@ -149,8 +163,8 @@ val_subset_indices=range(int(len(data_train)/2),len(data_train))
|
|||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices))
|
||||
|
||||
### Augmented Dataset ###
|
||||
data_train_aug = AugmentedDataset("./data", train=True, download=True, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
#data_train_aug.augement_data(aug_copy=1)
|
||||
data_train_aug = AugmentedDataset("./data", train=True, download=download_data, transform=transform, subset=(0,int(len(data_train)/2)))
|
||||
data_train_aug.augement_data(aug_copy=1)
|
||||
print(data_train_aug)
|
||||
|
||||
dl_train = torch.utils.data.DataLoader(data_train_aug, batch_size=BATCH_SIZE, shuffle=True)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue