mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Test doxygen
This commit is contained in:
parent
f507ff4741
commit
99f15b8946
4 changed files with 54 additions and 25 deletions
|
@ -18,15 +18,18 @@ import torch
|
|||
import kornia
|
||||
import random
|
||||
|
||||
#TF that don't have use for magnitude parameter.
|
||||
TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend'}
|
||||
#TF which implemetation doesn't allow gradient propagaition.
|
||||
TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize'}
|
||||
#TF for which magnitude should be ignored (Magnitude fixed).
|
||||
TF_ignore_mag= TF_no_mag | TF_no_grad
|
||||
|
||||
TF_no_mag={'Identity', 'FlipUD', 'FlipLR', 'Random', 'RandBlend'} #TF that don't have use for magnitude parameter.
|
||||
TF_no_grad={'Solarize', 'Posterize', '=Solarize', '=Posterize'} #TF which implemetation doesn't allow gradient propagaition.
|
||||
TF_ignore_mag= TF_no_mag | TF_no_grad #TF for which magnitude should be ignored (Magnitude fixed).
|
||||
# What is the max 'level' a transform could be predicted
|
||||
PARAMETER_MAX = 1
|
||||
# What is the min 'level' a transform could be predicted
|
||||
PARAMETER_MIN = 0.1
|
||||
|
||||
PARAMETER_MAX = 1 # What is the max 'level' a transform could be predicted
|
||||
PARAMETER_MIN = 0.1 # What is the min 'level' a transform could be predicted
|
||||
|
||||
### Available TF for Dataug ###
|
||||
# Dictionnary mapping tranformations identifiers to their function.
|
||||
# Each value of the dict should be a lambda function taking a (batch of data, magnitude of transformations) tuple as input and returns a batch of data.
|
||||
TF_dict={ #Dataugv5+
|
||||
|
@ -416,13 +419,16 @@ def blend(x,y,alpha):
|
|||
return res
|
||||
|
||||
#Not working
|
||||
def auto_contrast(x): #PAS OPTIMISE POUR DES BATCH #EXTRA LENT
|
||||
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
||||
print("Warning : Pas encore check !")
|
||||
(batch_size, channels, h, w) = x.shape
|
||||
x = int_image(x) #Expect image in the range of [0, 1]
|
||||
#print('Start',x[0])
|
||||
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
||||
def auto_contrast(x):
|
||||
"""NOT TESTED - EXTRA SLOW
|
||||
|
||||
"""
|
||||
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
||||
print("Warning : Pas encore check !")
|
||||
(batch_size, channels, h, w) = x.shape
|
||||
x = int_image(x) #Expect image in the range of [0, 1]
|
||||
#print('Start',x[0])
|
||||
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
||||
#print(img.shape)
|
||||
for chan_idx, chan in enumerate(img.chunk(channels, dim=1)): # Operation par channel
|
||||
#print(chan.shape)
|
||||
|
@ -449,19 +455,22 @@ def auto_contrast(x): #PAS OPTIMISE POUR DES BATCH #EXTRA LENT
|
|||
chan[chan==ix]=n_ix
|
||||
x[im_idx, chan_idx]=chan
|
||||
|
||||
#print('End',x[0])
|
||||
return float_image(x)
|
||||
#print('End',x[0])
|
||||
return float_image(x)
|
||||
|
||||
def equalize(x): #PAS OPTIMISE POUR DES BATCH
|
||||
raise Exception(self, "not implemented")
|
||||
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
||||
(batch_size, channels, h, w) = x.shape
|
||||
x = int_image(x) #Expect image in the range of [0, 1]
|
||||
#print('Start',x[0])
|
||||
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
||||
def equalize(x):
|
||||
""" NOT WORKING
|
||||
|
||||
"""
|
||||
raise Exception(self, "not implemented")
|
||||
# Optimisation : Application de LUT efficace / Calcul d'histogramme par batch/channel
|
||||
(batch_size, channels, h, w) = x.shape
|
||||
x = int_image(x) #Expect image in the range of [0, 1]
|
||||
#print('Start',x[0])
|
||||
for im_idx, img in enumerate(x.chunk(batch_size, dim=0)): #Operation par image
|
||||
#print(img.shape)
|
||||
for chan_idx, chan in enumerate(img.chunk(channels, dim=1)): # Operation par channel
|
||||
#print(chan.shape)
|
||||
hist = torch.histc(chan, bins=256, min=0, max=255) #PAS DIFFERENTIABLE
|
||||
|
||||
return float_image(x)
|
||||
return float_image(x)
|
Loading…
Add table
Add a link
Reference in a new issue