Dataugv5- Modification des TF pour propagation du gradient (mag)

This commit is contained in:
Harle, Antoine (Contracteur) 2019-11-18 12:53:23 -05:00
parent 05f81787d6
commit 994d657a28
5 changed files with 94 additions and 21 deletions

View file

@ -583,19 +583,33 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
def apply_TF(self, x, sampled_TF): def apply_TF(self, x, sampled_TF):
device = x.device device = x.device
batch_size, channels, h, w = x.shape
smps_x=[] smps_x=[]
masks=[]
for tf_idx in range(self._nb_tf): for tf_idx in range(self._nb_tf):
mask = sampled_TF==tf_idx #Create selection mask mask = sampled_TF==tf_idx #Create selection mask
smp_x = x[mask] #torch.masked_select() ? smp_x = x[mask] #torch.masked_select() ? (NEcessite d'expand le mask au meme dim)
if smp_x.shape[0]!=0: #if there's data to TF if smp_x.shape[0]!=0: #if there's data to TF
magnitude=self._params["mag"][tf_idx]*10 magnitude=self._params["mag"][tf_idx]*10
tf=self._TF[tf_idx] tf=self._TF[tf_idx]
#print(magnitude) #print(magnitude)
x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude) # Refusionner eviter x[mask] : in place #x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude) # Refusionner eviter x[mask] : in place
smp_x = self._TF_dict[tf](x=smp_x, mag=magnitude)
idx= mask.nonzero()
#print('-'*8)
idx= idx.expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
#print(idx.shape, smp_x.shape)
#print(idx[0], tf_idx)
#print(smp_x[0,])
#x=x.view(-1,3*32*32)
#smp_x=smp_x.view(-1,3*32*32)
x=x.scatter(dim=0, index=idx, src=smp_x)
#x=x.view(-1,3,32,32)
#print(x[0,])
return x return x
def adjust_prob(self, soft=False): #Detach from gradient ? def adjust_prob(self, soft=False): #Detach from gradient ?

View file

@ -5,9 +5,9 @@ from train_utils import *
tf_names = [ tf_names = [
## Geometric TF ## ## Geometric TF ##
'Identity', #'Identity',
'FlipUD', #'FlipUD',
'FlipLR', #'FlipLR',
'Rotate', 'Rotate',
'TranslateX', 'TranslateX',
'TranslateY', 'TranslateY',
@ -37,7 +37,7 @@ else:
########################################## ##########################################
if __name__ == "__main__": if __name__ == "__main__":
n_inner_iter = 10 n_inner_iter = 1
epochs = 2 epochs = 2
dataug_epoch_start=0 dataug_epoch_start=0
@ -68,7 +68,7 @@ if __name__ == "__main__":
t0 = time.process_time() t0 = time.process_time()
tf_dict = {k: TF.TF_dict[k] for k in tf_names} tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict #tf_dict = TF.TF_dict
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=2, mix_dist=0.5), LeNet(3,10)).to(device) aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=1, mix_dist=0.5, glob_mag=False), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device) #aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device)
print(str(aug_model), 'on', device_name) print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)

View file

@ -623,8 +623,8 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
tf = time.process_time() tf = time.process_time()
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
#viz_sample_data(imgs=aug_model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch)) viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
if(not high_grad_track): if(not high_grad_track):
countcopy+=1 countcopy+=1
@ -648,8 +648,9 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
print('Accuracy :', accuracy) print('Accuracy :', accuracy)
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start)) print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
print('TF Proba :', model['data_aug']['prob'].data) print('TF Proba :', model['data_aug']['prob'].data)
#print('proba grad',aug_model['data_aug']['prob'].grad) #print('proba grad',model['data_aug']['prob'].grad)
print('TF Mag :', model['data_aug']['mag'].data) print('TF Mag :', model['data_aug']['mag'].data)
print('Mag grad',model['data_aug']['mag'].grad)
############# #############
#### Log #### #### Log ####
data={ data={

View file

@ -28,6 +28,7 @@ TF_dict={ #f(mag_normalise)=mag_reelle
#'Equalize': (lambda mag: None), #'Equalize': (lambda mag: None),
} }
''' '''
'''
TF_dict={ TF_dict={
## Geometric TF ## ## Geometric TF ##
'Identity' : (lambda x, mag: x), 'Identity' : (lambda x, mag: x),
@ -42,7 +43,7 @@ TF_dict={
## Color TF (Expect image in the range of [0, 1]) ## ## Color TF (Expect image in the range of [0, 1]) ##
'Contrast': (lambda x, mag: contrast(x, contrast_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Contrast': (lambda x, mag: contrast(x, contrast_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
'Color':(lambda x, mag: color(x, color_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Color':(lambda x, mag: color(x, color_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
'Brightness':(lambda x, mag: brightness(x, brightness_factor=torch.tensor([rand_float(mag, minval=1., maxval=1.9) for _ in x], device=x.device))), 'Brightness':(lambda x, mag: brightness(x, brightness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))), 'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=torch.tensor([rand_float(mag, minval=0.1, maxval=1.9) for _ in x], device=x.device))),
'Posterize': (lambda x, mag: posterize(x, bits=torch.tensor([rand_int(mag, minval=4, maxval=8) for _ in x], device=x.device))), 'Posterize': (lambda x, mag: posterize(x, bits=torch.tensor([rand_int(mag, minval=4, maxval=8) for _ in x], device=x.device))),
'Solarize': (lambda x, mag: solarize(x, thresholds=torch.tensor([rand_int(mag,minval=1, maxval=256)/256. for _ in x], device=x.device))) , #=>Image entre [0,1] #Pas opti pour des batch 'Solarize': (lambda x, mag: solarize(x, thresholds=torch.tensor([rand_int(mag,minval=1, maxval=256)/256. for _ in x], device=x.device))) , #=>Image entre [0,1] #Pas opti pour des batch
@ -51,6 +52,27 @@ TF_dict={
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent) #'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
#'Equalize': (lambda mag: None), #'Equalize': (lambda mag: None),
} }
'''
TF_dict={
## Geometric TF ##
'Identity' : (lambda x, mag: x),
'FlipUD' : (lambda x, mag: flipUD(x)),
'FlipLR' : (lambda x, mag: flipLR(x)),
'Rotate': (lambda x, mag: rotate(x, angle=rand_float(size=x.shape[0], mag=mag, maxval=30))),
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_float(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_float(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_float(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_float(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
## Color TF (Expect image in the range of [0, 1]) ##
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_float(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Color':(lambda x, mag: color(x, color_factor=rand_float(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_float(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_float(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
'Posterize': (lambda x, mag: posterize(x, bits=rand_float(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_float(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] #Pas opti pour des batch
}
def int_image(float_image): #ATTENTION : legere perte d'info (granularite : 1/256 = 0.0039) def int_image(float_image): #ATTENTION : legere perte d'info (granularite : 1/256 = 0.0039)
return (float_image*255.).type(torch.uint8) return (float_image*255.).type(torch.uint8)
@ -71,6 +93,19 @@ def rand_float(mag, maxval, minval=None): #[(-maxval,minval), maxval]
if not minval : minval = -real_max if not minval : minval = -real_max
return random.uniform(minval, real_max) return random.uniform(minval, real_max)
def rand_float(size, mag, maxval, minval=None): #[(-maxval,minval), maxval]
real_max = float_parameter(mag, maxval=maxval)
if not minval : minval = -real_max
#return random.uniform(minval, real_max)
return minval +(real_max-minval) * torch.rand(size, device=mag.device)
def zero_stack(tensor, zero_pos):
if zero_pos==0:
return torch.stack((tensor, torch.zeros((tensor.shape[0],), device=tensor.device)), dim=1)
if zero_pos==1:
return torch.stack((torch.zeros((tensor.shape[0],), device=tensor.device), tensor), dim=1)
else:
raise Exception("Invalid zero_pos : ", zero_pos)
#https://github.com/tensorflow/models/blob/fc2056bce6ab17eabdc139061fef8f4f2ee763ec/research/autoaugment/augmentation_transforms.py#L137 #https://github.com/tensorflow/models/blob/fc2056bce6ab17eabdc139061fef8f4f2ee763ec/research/autoaugment/augmentation_transforms.py#L137
PARAMETER_MAX = 10 # What is the max 'level' a transform could be predicted PARAMETER_MAX = 10 # What is the max 'level' a transform could be predicted
@ -83,7 +118,9 @@ def float_parameter(level, maxval):
Returns: Returns:
A float that results from scaling `maxval` according to `level`. A float that results from scaling `maxval` according to `level`.
""" """
return float(level) * maxval / PARAMETER_MAX
#return float(level) * maxval / PARAMETER_MAX
return (level * maxval / PARAMETER_MAX)#.to(torch.float32)
def int_parameter(level, maxval): def int_parameter(level, maxval):
"""Helper function to scale `val` between 0 and maxval . """Helper function to scale `val` between 0 and maxval .
@ -94,7 +131,11 @@ def int_parameter(level, maxval):
Returns: Returns:
An int that results from scaling `maxval` according to `level`. An int that results from scaling `maxval` according to `level`.
""" """
return int(level * maxval / PARAMETER_MAX) #return int(level * maxval / PARAMETER_MAX)
print(level)
res= (level * maxval / PARAMETER_MAX).to(torch.int8).requires_grad_()#.type(torch.int8)
print(res)
return res
def flipLR(x): def flipLR(x):
device = x.device device = x.device
@ -119,10 +160,11 @@ def flipUD(x):
return kornia.warp_perspective(x, M, dsize=(h, w)) return kornia.warp_perspective(x, M, dsize=(h, w))
def rotate(x, angle): def rotate(x, angle):
return kornia.rotate(x, angle=angle.type(torch.float32)) #Kornia ne supporte pas les int return kornia.rotate(x, angle=angle)#.type(torch.float32)) #Kornia ne supporte pas les int
def translate(x, translation): def translate(x, translation):
return kornia.translate(x, translation=translation.type(torch.float32)) #Kornia ne supporte pas les int #print(translation)
return kornia.translate(x, translation=translation)#.type(torch.float32)) #Kornia ne supporte pas les int
def shear(x, shear): def shear(x, shear):
return kornia.shear(x, shear=shear) return kornia.shear(x, shear=shear)
@ -156,6 +198,7 @@ def sharpeness(x, sharpness_factor):
#https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py #https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py
def posterize(x, bits): def posterize(x, bits):
bits = bits.type(torch.uint8) #Perte du gradient
x = int_image(x) #Expect image in the range of [0, 1] x = int_image(x) #Expect image in the range of [0, 1]
mask = ~(2 ** (8 - bits) - 1).type(torch.uint8) mask = ~(2 ** (8 - bits) - 1).type(torch.uint8)
@ -217,10 +260,25 @@ def equalize(x): #PAS OPTIMISE POUR DES BATCH
def solarize(x, thresholds): #PAS OPTIMISE POUR DES BATCH def solarize(x, thresholds): #PAS OPTIMISE POUR DES BATCH
# Optimisation : Mask direct sur toute les donnees (Mask = (B,C,H,W)> (B)) # Optimisation : Mask direct sur toute les donnees (Mask = (B,C,H,W)> (B))
batch_size, channels, h, w = x.shape
imgs=[]
for idx, t in enumerate(thresholds): #Operation par image for idx, t in enumerate(thresholds): #Operation par image
mask = x[idx] > t.item() mask = x[idx] > t #Perte du gradient
inv_x = 1-x[idx][mask] #In place
x[idx][mask]=inv_x #inv_x = 1-x[idx][mask]
#x[idx][mask]=inv_x
#
#Out of place
im = x[idx]
inv_x = 1-im[mask]
imgs.append(im.masked_scatter(mask,inv_x))
idxs=torch.tensor(range(x.shape[0]), device=x.device)
idxs=idxs.unsqueeze(dim=1).expand(-1,channels).unsqueeze(dim=2).expand(-1,channels, h).unsqueeze(dim=3).expand(-1,channels, h, w) #Il y a forcement plus simple ...
x=x.scatter(dim=0, index=idxs, src=torch.stack(imgs))
#
return x return x
#https://github.com/python-pillow/Pillow/blob/9c78c3f97291bd681bc8637922d6a2fa9415916c/src/PIL/Image.py#L2818 #https://github.com/python-pillow/Pillow/blob/9c78c3f97291bd681bc8637922d6a2fa9415916c/src/PIL/Image.py#L2818

View file

@ -170,7 +170,7 @@ def viz_sample_data(imgs, labels, fig_name='data_sample'):
plt.xticks([]) plt.xticks([])
plt.yticks([]) plt.yticks([])
plt.grid(False) plt.grid(False)
plt.imshow(sample[i,], cmap=plt.cm.binary) plt.imshow(sample[i,].detach().numpy(), cmap=plt.cm.binary)
plt.xlabel(labels[i].item()) plt.xlabel(labels[i].item())
plt.savefig(fig_name) plt.savefig(fig_name)