Ajout simplification pour entrainment

This commit is contained in:
Harle, Antoine (Contracteur) 2020-01-28 19:42:00 -05:00
parent 705ecd74b7
commit 96ed9fe2ae
3 changed files with 163 additions and 0 deletions

View file

@ -870,6 +870,8 @@ class Higher_model(nn.Module):
"""
return self._name
from utils import clip_norm
from train_utils import compute_vaLoss
class Augmented_model(nn.Module):
"""Wrapper for a Data Augmentation module and a model.
@ -917,6 +919,70 @@ class Augmented_model(nn.Module):
self._data_augmentation=mode
self._mods['data_aug'].augment(mode)
def start_bilevel_opt(self, inner_it, hp_list, opt_param, dl_val):
if inner_it==0 or len(hp_list)==0: #No meta-opt
print("No meta optimization")
self._diffopt = model['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=False)
else: #Bi-level opt
print("Bi-Level optimization")
self._it_count=0
self._in_it=inner_it
self._opt_param=opt_param
#Inner Opt
inner_opt = torch.optim.SGD(self._mods['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
self._diffopt = self._mods['model'].get_diffopt(
inner_opt,
grad_callback=(lambda grads: clip_norm(grads, max_norm=10)),
track_higher_grads=True)
#Meta Opt
self._meta_opt = torch.optim.Adam(hp_list, lr=opt_param['Meta']['lr'])
self._dl_val=dl_val
self._dl_val_it=iter(dl_val)
self._val_loss=0.
self._meta_opt.zero_grad()
def step(self, loss):
self._it_count+=1
self._diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
if(self._meta_opt and self._it_count>0 and self._it_count%self._in_it==0): #Perform Meta step
#print("meta")
self._val_loss = compute_vaLoss(model=self._mods['model'], dl_it=self._dl_val_it, dl=self._dl_val) + self._mods['data_aug'].reg_loss()
#print_graph(val_loss) #to visualize computational graph
self._val_loss.backward()
torch.nn.utils.clip_grad_norm_(self._mods['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
self._meta_opt.step()
#Adjust Hyper-parameters
self._mods['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
#For optimizer parameters, if needed
#for param_group in self._diffopt.param_groups:
# for param in list(self._opt_param['Inner'].keys())[1:]:
# param_group[param].data = param_group[param].data.clamp(min=1e-4)
#Reset gradients
self._diffopt.detach_()
self._mods['model'].detach_()
self._meta_opt.zero_grad()
self._it_count=0
def train(self, mode=True):
""" Set the module training mode.