diff --git a/higher/model.py b/higher/model.py index 9835ed2..fe7e609 100644 --- a/higher/model.py +++ b/higher/model.py @@ -3,6 +3,7 @@ import torch import torch.nn as nn import torch.nn.functional as F +## Basic CNN ## class LeNet(nn.Module): def __init__(self, num_inp, num_out): super(LeNet, self).__init__() @@ -48,4 +49,92 @@ class LeNet(nn.Module): return self._params[key] def __str__(self): - return "LeNet" \ No newline at end of file + return "LeNet" + +## Wide ResNet ## +#https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py +#https://github.com/arcelien/pba/blob/master/pba/wrn.py +class BasicBlock(nn.Module): + def __init__(self, in_planes, out_planes, stride, dropRate=0.0): + super(BasicBlock, self).__init__() + self.bn1 = nn.BatchNorm2d(in_planes) + self.relu1 = nn.ReLU(inplace=True) + self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(out_planes) + self.relu2 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, + padding=1, bias=False) + self.droprate = dropRate + self.equalInOut = (in_planes == out_planes) + self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, + padding=0, bias=False) or None + def forward(self, x): + if not self.equalInOut: + x = self.relu1(self.bn1(x)) + else: + out = self.relu1(self.bn1(x)) + out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x))) + if self.droprate > 0: + out = F.dropout(out, p=self.droprate, training=self.training) + out = self.conv2(out) + return torch.add(x if self.equalInOut else self.convShortcut(x), out) + +class NetworkBlock(nn.Module): + def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0): + super(NetworkBlock, self).__init__() + self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate) + def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate): + layers = [] + for i in range(int(nb_layers)): + layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate)) + return nn.Sequential(*layers) + def forward(self, x): + return self.layer(x) + +class WideResNet(nn.Module): + #def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0): + def __init__(self, num_classes, wrn_size, depth=28, dropRate=0.0): + super(WideResNet, self).__init__() + + kernel_size = wrn_size + filter_size = 3 + nChannels = [min(kernel_size, 16), kernel_size, kernel_size * 2, kernel_size * 4] + strides = [1, 2, 2] # stride for each resblock + + #nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor] + assert((depth - 4) % 6 == 0) + n = (depth - 4) / 6 + block = BasicBlock + # 1st conv before any network block + self.conv1 = nn.Conv2d(filter_size, nChannels[0], kernel_size=3, stride=1, + padding=1, bias=False) + # 1st block + self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, strides[0], dropRate) + # 2nd block + self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, strides[1], dropRate) + # 3rd block + self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, strides[2], dropRate) + # global average pooling and classifier + self.bn1 = nn.BatchNorm2d(nChannels[3]) + self.relu = nn.ReLU(inplace=True) + self.fc = nn.Linear(nChannels[3], num_classes) + self.nChannels = nChannels[3] + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + elif isinstance(m, nn.Linear): + m.bias.data.zero_() + def forward(self, x): + out = self.conv1(x) + out = self.block1(out) + out = self.block2(out) + out = self.block3(out) + out = self.relu(self.bn1(out)) + out = F.avg_pool2d(out, 8) + out = out.view(-1, self.nChannels) + return self.fc(out) \ No newline at end of file diff --git a/higher/test_dataug.py b/higher/test_dataug.py index 68036fa..5d16135 100644 --- a/higher/test_dataug.py +++ b/higher/test_dataug.py @@ -783,8 +783,8 @@ if __name__ == "__main__": #### TF number tests #### #''' res_folder="res/TF_nb_tests/" - epochs= 200 - inner_its = [0, 10] + epochs= 100 + inner_its = [10] dataug_epoch_starts= [0] TF_nb = [len(TF.TF_dict)] #range(1,len(TF.TF_dict)+1) N_seq_TF= [1, 2, 3, 4] @@ -808,7 +808,7 @@ if __name__ == "__main__": aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device) print(str(aug_model), 'on', device_name) #run_simple_dataug(inner_it=n_inner_iter, epochs=epochs) - log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10) + log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None) #### plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))