meta-learning differee (train_utils.py)

This commit is contained in:
Harle, Antoine (Contracteur) 2020-02-19 11:59:04 -05:00
parent 53f6600ff6
commit 9513483893

View file

@ -327,7 +327,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
#print(len(model['model']['functional']._fast_params),"step", time.process_time()-t)
if(high_grad_track and i>0 and i%inner_it==0): #Perform Meta step
if(high_grad_track and i>0 and i%inner_it==0 and epoch>=opt_param['Meta']['epoch_start']): #Perform Meta step
#print("meta")
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
#print_graph(val_loss) #to visualize computational graph
@ -349,9 +349,10 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
model['model'].detach_()
meta_opt.zero_grad()
elif not high_grad_track:
#diffopt.detach_()
elif not high_grad_track or epoch<opt_param['Meta']['epoch_start']:
diffopt.detach_()
model['model'].detach_()
meta_opt.zero_grad()
tf = time.perf_counter()