Amelioration visualisation des proba

This commit is contained in:
Harle, Antoine (Contracteur) 2019-11-13 16:18:53 -05:00
parent f0c0559e73
commit 93d91815f5
7 changed files with 720 additions and 211 deletions

View file

@ -21,17 +21,22 @@ if __name__ == "__main__":
## Acc, Time, Epochs = f(n_tf) ##
fig_name="res/TF_seq_tests_compare"
inner_its = [10]
inner_its = [0]
dataug_epoch_starts= [0]
TF_nb = 14 #range(1,14+1)
N_seq_TF= [1, 2, 3, 4]
TF_nb = range(1,14+1)
N_seq_TF= [1] #, 2, 3, 4]
fig, ax = plt.subplots(ncols=3, figsize=(30, 8))
for in_it in inner_its:
for dataug in dataug_epoch_starts:
n_tf = TF_nb
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF)-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, dataug, in_it) for n_tf in TF_nb]
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-100 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(n_tf, 1, dataug, in_it) for n_tf in TF_nb]
#n_tf = N_seq_TF
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-200 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
#filenames =["res/TF_nb_tests/log/Aug_mod(Data_augV4(Uniform-{} TF x {})-LeNet)-100 epochs (dataug:{})- {} in_it.json".format(TF_nb, n_tf, dataug, in_it) for n_tf in N_seq_TF]
all_data=[]
@ -42,8 +47,6 @@ if __name__ == "__main__":
data = json.load(json_file)
all_data.append(data)
n_tf = N_seq_TF
#n_tf = [len(x["Param_names"]) for x in all_data]
acc = [x["Accuracy"] for x in all_data]
epochs = [len(x["Log"]) for x in all_data]
time = [x["Time"][0] for x in all_data]

View file

@ -54,6 +54,7 @@ class LeNet(nn.Module):
## Wide ResNet ##
#https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
#https://github.com/arcelien/pba/blob/master/pba/wrn.py
#https://github.com/szagoruyko/wide-residual-networks/blob/master/pytorch/resnet.py
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
@ -97,9 +98,10 @@ class WideResNet(nn.Module):
def __init__(self, num_classes, wrn_size, depth=28, dropRate=0.0):
super(WideResNet, self).__init__()
kernel_size = wrn_size
self.kernel_size = wrn_size
self.depth=depth
filter_size = 3
nChannels = [min(kernel_size, 16), kernel_size, kernel_size * 2, kernel_size * 4]
nChannels = [min(self.kernel_size, 16), self.kernel_size, self.kernel_size * 2, self.kernel_size * 4]
strides = [1, 2, 2] # stride for each resblock
#nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor]
@ -138,3 +140,9 @@ class WideResNet(nn.Module):
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)
def architecture(self):
return super(WideResNet, self).__str__()
def __str__(self):
return "WideResNet(s{}-d{})".format(self.kernel_size, self.depth)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 54 KiB

Before After
Before After

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 77 KiB

Before After
Before After

View file

@ -38,13 +38,13 @@ else:
if __name__ == "__main__":
n_inner_iter = 10
epochs = 200
epochs = 2
dataug_epoch_start=0
#### Classic ####
'''
model = LeNet(3,10).to(device)
#model = torchvision.models.resnet18()
#model = LeNet(3,10).to(device)
model = WideResNet(num_classes=10, wrn_size=16).to(device)
#model = Augmented_model(Data_augV3(mix_dist=0.0), LeNet(3,10)).to(device)
#model.augment(mode=False)
@ -69,31 +69,32 @@ if __name__ == "__main__":
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
#tf_dict = TF.TF_dict
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
#aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
####
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
plot_res(log, fig_name="res/{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), param_names=tf_names)
print('-'*9)
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
print(str(aug_model),": acc", out["Accuracy"], "in (s ?):", out["Time"][0], "+/-", out["Time"][1])
print(str(aug_model),": acc", out["Accuracy"], "in (s?):", out["Time"][0], "+/-", out["Time"][1])
with open("res/log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
print('Execution Time : %.00f (s ?)'%(time.process_time() - t0))
print('Execution Time : %.00f (s?)'%(time.process_time() - t0))
print('-'*9)
#'''
#### TF number tests ####
'''
res_folder="res/TF_nb_tests/"
epochs= 100
epochs= 200
inner_its = [10]
dataug_epoch_starts= [0]
TF_nb = [len(TF.TF_dict)] #range(1,len(TF.TF_dict)+1)
N_seq_TF= [1, 2, 3, 4]
TF_nb = range(1,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
N_seq_TF= [1] #[1, 2, 3, 4]
try:
os.mkdir(res_folder)
@ -106,7 +107,6 @@ if __name__ == "__main__":
for dataug_epoch_start in dataug_epoch_starts:
print("---Starting dataug", dataug_epoch_start,"---")
for n_tf in N_seq_TF:
print("---Starting N_TF", n_tf,"---")
for i in TF_nb:
keys = list(TF.TF_dict.keys())[0:i]
ntf_dict = {k: TF.TF_dict[k] for k in keys}
@ -114,7 +114,7 @@ if __name__ == "__main__":
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device)
print(str(aug_model), 'on', device_name)
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
####
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
@ -128,5 +128,3 @@ if __name__ == "__main__":
print('-'*9)
'''

View file

@ -15,7 +15,7 @@ def print_graph(PyTorch_obj, fig_name='graph'):
graph.format = 'svg' #https://graphviz.readthedocs.io/en/stable/manual.html#formats
graph.render(fig_name)
def plot_res(log, fig_name='res'):
def plot_res(log, fig_name='res', param_names=None):
epochs = [x["epoch"] for x in log]
@ -36,10 +36,13 @@ def plot_res(log, fig_name='res'):
ax[2].legend()
else :
ax[2].set_title('Prob')
for idx, _ in enumerate(log[0]["param"]):
ax[2].plot(epochs,[x["param"][idx] for x in log], label='P'+str(idx))
ax[2].legend()
#ax[2].legend(('P-0', 'P-45', 'P-180'))
#for idx, _ in enumerate(log[0]["param"]):
#ax[2].plot(epochs,[x["param"][idx] for x in log], label='P'+str(idx))
if not param_names : param_names = ['P'+str(idx) for idx, _ in enumerate(log[0]["param"])]
proba=[[x["param"][idx] for x in log] for idx, _ in enumerate(log[0]["param"])]
ax[2].stackplot(epochs, proba, labels=param_names)
ax[2].legend(param_names, loc='center left', bbox_to_anchor=(1, 0.5))
fig_name = fig_name.replace('.',',')
plt.savefig(fig_name)
@ -193,6 +196,20 @@ def print_torch_mem(add_info=''):
#print(add_info, "-Garbage size :",len(gc.garbage))
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = add_info + ' memory (MB)'
string += ' | allocated: {}'.format(
torch.cuda.memory_allocated() / mega_bytes)
string += ' | max allocated: {}'.format(
torch.cuda.max_memory_allocated() / mega_bytes)
string += ' | cached: {}'.format(torch.cuda.memory_cached() / mega_bytes)
string += ' | max cached: {}'.format(
torch.cuda.max_memory_cached()/ mega_bytes)
print(string)
class loss_monitor(): #Voir https://github.com/pytorch/ignite
def __init__(self, patience, end_train=1):
self.patience = patience