mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Changement mesure memoire + Tests solarize differentiable
This commit is contained in:
parent
6277e268c1
commit
7d5aa7c6fb
4 changed files with 102 additions and 66 deletions
|
@ -346,10 +346,14 @@ def posterize(x, bits):
|
|||
|
||||
return float_image(x & mask)
|
||||
|
||||
import torch.nn.functional as F
|
||||
def solarize(x, thresholds):
|
||||
"""Invert all pixel values above a threshold.
|
||||
|
||||
Be warry that the use of the inequality (x>tresholds) block the gradient propagation.
|
||||
|
||||
TODO : Make differentiable.
|
||||
|
||||
Args:
|
||||
x (Tensor): Batch of images.
|
||||
thresholds (Tensor): All pixels above this level are inverted
|
||||
|
@ -386,6 +390,25 @@ def solarize(x, thresholds):
|
|||
#x[mask]=inv_x
|
||||
#x=x.masked_scatter(mask, inv_x)
|
||||
|
||||
#Differentiable (/Thresholds) ?
|
||||
|
||||
#inv_x_bT= F.relu(x) - F.relu(x - thresholds)
|
||||
#inv_x_aT= 1-x #Besoin thresholds
|
||||
|
||||
#print('-'*10)
|
||||
#print(thresholds[0])
|
||||
#print(x[0])
|
||||
#print(inv_x_bT[0])
|
||||
#print(inv_x_aT[0])
|
||||
|
||||
#x=torch.where(x>thresholds,inv_x_aT, inv_x_bT)
|
||||
#print(torch.allclose(x, x+0.001, atol=1e-3))
|
||||
#print(torch.allclose(x, sol_x, atol=1e-2))
|
||||
#print(torch.eq(x,sol_x)[0])
|
||||
|
||||
#print(x[0])
|
||||
#print(sol_x[0])
|
||||
#'''
|
||||
return x
|
||||
|
||||
def blend(x,y,alpha):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue