Option Weight_loss avec mean + lisbilite mixed_loss

This commit is contained in:
Harle, Antoine (Contracteur) 2020-03-06 14:25:07 -05:00
parent b820f49437
commit 755e3ca024
9 changed files with 23214 additions and 1396 deletions

View file

@ -1,278 +0,0 @@
{
"Accuracy": 34.77,
"Time": [
24.188058562999988,
9.187996739715532,
77.28622087000076
],
"Optimizer": {
"Meta": {
"optim": "Adam",
"lr": 0.01,
"epoch_start": 2
},
"Inner": {
"optim": "SGD",
"lr": 0.1,
"momentum": 0.9,
"decay": 0.0005,
"nesterov": false,
"scheduler": "cosine"
}
},
"Device": "TITAN RTX",
"Memory": [
8848.48095703125,
9406.0
],
"TF_config": "../config/wide_tf_config.json",
"Param_names": [
"Identity",
"FlipUD",
"FlipLR",
"Rotate",
"TranslateX",
"TranslateY",
"ShearX",
"ShearY",
"Contrast",
"Color",
"Brightness",
"Sharpness",
"Posterize",
"Solarize"
],
"Log": [
{
"epoch": 1,
"train_loss": 4.340163230895996,
"val_loss": 1.8241708278656006,
"acc": 33.92,
"f1": [
0.4010150730609894,
0.45749133825302124,
0.062157198786735535,
0.0,
0.22684554755687714,
0.30427879095077515,
0.40036138892173767,
0.3626580238342285,
0.3521633744239807,
0.42502132058143616
],
"time": 11.260639868998624,
"param": [
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
}
]
},
{
"epoch": 2,
"train_loss": 4.544678688049316,
"val_loss": 2.2015955448150635,
"acc": 19.03,
"f1": [
0.0,
0.0,
0.1336459070444107,
0.0,
0.0,
0.0019960072822868824,
0.2973305583000183,
0.0,
0.3377264738082886,
0.32320302724838257
],
"time": 29.515849530000196,
"param": [
{
"p": 0.14334098994731903,
"m": 0.5
},
{
"p": 0.1366901993751526,
"m": 0.5
},
{
"p": 0.02433314360678196,
"m": 0.5
},
{
"p": 0.11546584218740463,
"m": 0.5358375906944275
},
{
"p": 0.11538710445165634,
"m": 0.533816397190094
},
{
"p": 0.040745750069618225,
"m": 0.5584388971328735
},
{
"p": 0.038949571549892426,
"m": 0.5608316659927368
},
{
"p": 0.012446501292288303,
"m": 0.4664125442504883
},
{
"p": 0.10699953138828278,
"m": 0.4947274625301361
},
{
"p": 0.035983771085739136,
"m": 0.5605397820472717
},
{
"p": 0.13788673281669617,
"m": 0.5605310201644897
},
{
"p": 0.05494990572333336,
"m": 0.4623415768146515
},
{
"p": 0.03610691428184509,
"m": 0.5
},
{
"p": 0.000714035879354924,
"m": 0.5
}
]
},
{
"epoch": 3,
"train_loss": 3.932952880859375,
"val_loss": 1.810924768447876,
"acc": 34.77,
"f1": [
0.45627787709236145,
0.3929039537906647,
0.21142154932022095,
0.0,
0.24470260739326477,
0.3325137794017792,
0.37752795219421387,
0.3649212419986725,
0.3999998867511749,
0.4619288146495819
],
"time": 31.787686290001147,
"param": [
{
"p": 0.15683914721012115,
"m": 0.5
},
{
"p": 0.14958539605140686,
"m": 0.5
},
{
"p": 0.005535890813916922,
"m": 0.5
},
{
"p": 0.12803703546524048,
"m": 0.5417929291725159
},
{
"p": 0.12845920026302338,
"m": 0.5399859547615051
},
{
"p": 0.030060067772865295,
"m": 0.5658226013183594
},
{
"p": 0.030608290806412697,
"m": 0.5655825734138489
},
{
"p": 0.000719205301720649,
"m": 0.4618874192237854
},
{
"p": 0.11408289521932602,
"m": 0.5018693208694458
},
{
"p": 0.028412828221917152,
"m": 0.567233145236969
},
{
"p": 0.1516825407743454,
"m": 0.5667399168014526
},
{
"p": 0.05234885215759277,
"m": 0.4578409194946289
},
{
"p": 0.022909382358193398,
"m": 0.5
},
{
"p": 0.000719205301720649,
"m": 0.5
}
]
}
]
}

View file

@ -1,278 +0,0 @@
{
"Accuracy": 41.61,
"Time": [
23.206698947999637,
8.420834064449442,
74.29275650800082
],
"Optimizer": {
"Meta": {
"optim": "Adam",
"lr": 0.01,
"epoch_start": 2
},
"Inner": {
"optim": "SGD",
"lr": 0.1,
"momentum": 0.9,
"decay": 0.0005,
"nesterov": false,
"scheduler": "cosine"
}
},
"Device": "TITAN RTX",
"Memory": [
10932.84423828125,
11502.0
],
"TF_config": "../config/wide_tf_config.json",
"Param_names": [
"Identity",
"FlipUD",
"FlipLR",
"Rotate",
"TranslateX",
"TranslateY",
"ShearX",
"ShearY",
"Contrast",
"Color",
"Brightness",
"Sharpness",
"Posterize",
"Solarize"
],
"Log": [
{
"epoch": 1,
"train_loss": 5.047506332397461,
"val_loss": 1.8627994060516357,
"acc": 30.87,
"f1": [
0.24395981431007385,
0.47128555178642273,
0.12957310676574707,
0.03165733814239502,
0.3364981710910797,
0.2304408997297287,
0.22870653867721558,
0.3615278899669647,
0.39419788122177124,
0.23103205859661102
],
"time": 11.350196486999266,
"param": [
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
}
]
},
{
"epoch": 2,
"train_loss": 3.986489772796631,
"val_loss": 1.8346458673477173,
"acc": 31.54,
"f1": [
0.1492006629705429,
0.49342092871665955,
0.2455417811870575,
0.05789106339216232,
0.19369032979011536,
0.35909509658813477,
0.4262000024318695,
0.362099826335907,
0.3514850437641144,
0.33287280797958374
],
"time": 28.168936950998614,
"param": [
{
"p": 0.08662248402833939,
"m": 0.5
},
{
"p": 0.12017267942428589,
"m": 0.5
},
{
"p": 0.06689173728227615,
"m": 0.5
},
{
"p": 0.017104730010032654,
"m": 0.45937132835388184
},
{
"p": 0.11060622334480286,
"m": 0.5103066563606262
},
{
"p": 0.003255991730839014,
"m": 0.5017405152320862
},
{
"p": 0.12654243409633636,
"m": 0.49801188707351685
},
{
"p": 0.13454756140708923,
"m": 0.5034767389297485
},
{
"p": 0.003266105428338051,
"m": 0.5874159932136536
},
{
"p": 0.08708416670560837,
"m": 0.5116021037101746
},
{
"p": 0.06960024684667587,
"m": 0.5652018785476685
},
{
"p": 0.021111784502863884,
"m": 0.5052279233932495
},
{
"p": 0.08072198182344437,
"m": 0.5
},
{
"p": 0.07247190922498703,
"m": 0.5
}
]
},
{
"epoch": 3,
"train_loss": 3.561516046524048,
"val_loss": 1.6170583963394165,
"acc": 41.61,
"f1": [
0.4895579218864441,
0.558395504951477,
0.2533658444881439,
0.16093631088733673,
0.33717265725135803,
0.4017256796360016,
0.4744231402873993,
0.45925915241241455,
0.4439767003059387,
0.41731059551239014
],
"time": 30.10096340600103,
"param": [
{
"p": 0.08856508880853653,
"m": 0.5
},
{
"p": 0.11172367632389069,
"m": 0.5
},
{
"p": 0.0639350414276123,
"m": 0.5
},
{
"p": 0.016709892079234123,
"m": 0.43965014815330505
},
{
"p": 0.10565922409296036,
"m": 0.4921151101589203
},
{
"p": 0.0275463555008173,
"m": 0.5182940363883972
},
{
"p": 0.13088124990463257,
"m": 0.4868132770061493
},
{
"p": 0.13668863475322723,
"m": 0.49816736578941345
},
{
"p": 0.03130698949098587,
"m": 0.6004531383514404
},
{
"p": 0.09972310811281204,
"m": 0.5246540307998657
},
{
"p": 0.045673172920942307,
"m": 0.574697732925415
},
{
"p": 0.002397010801360011,
"m": 0.5314385294914246
},
{
"p": 0.07218044251203537,
"m": 0.5
},
{
"p": 0.06701013445854187,
"m": 0.5
}
]
}
]
}

View file

@ -1,278 +0,0 @@
{
"Accuracy": 38.16,
"Time": [
23.062749677666943,
8.438213819031485,
73.85847612699945
],
"Optimizer": {
"Meta": {
"optim": "Adam",
"lr": 0.01,
"epoch_start": 2
},
"Inner": {
"optim": "SGD",
"lr": 0.1,
"momentum": 0.9,
"decay": 0.0005,
"nesterov": false,
"scheduler": "cosine"
}
},
"Device": "TITAN RTX",
"Memory": [
11989.95849609375,
12552.0
],
"TF_config": "../config/wide_tf_config.json",
"Param_names": [
"Identity",
"FlipUD",
"FlipLR",
"Rotate",
"TranslateX",
"TranslateY",
"ShearX",
"ShearY",
"Contrast",
"Color",
"Brightness",
"Sharpness",
"Posterize",
"Solarize"
],
"Log": [
{
"epoch": 1,
"train_loss": 4.64195442199707,
"val_loss": 4.229354381561279,
"acc": 25.75,
"f1": [
0.41376474499702454,
0.18275853991508484,
0.0019940172787755728,
0.06512296199798584,
0.1451612263917923,
0.27542850375175476,
0.3096938133239746,
0.2574758231639862,
0.10782603919506073,
0.33964213728904724
],
"time": 11.202403799999956,
"param": [
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
}
]
},
{
"epoch": 2,
"train_loss": 4.143813133239746,
"val_loss": 1.9155528545379639,
"acc": 26.9,
"f1": [
0.3458250164985657,
0.2401600331068039,
0.28872257471084595,
0.24832914769649506,
0.0,
0.01966567523777485,
0.30303019285202026,
0.11942955106496811,
0.35883164405822754,
0.3803741931915283
],
"time": 27.85085194000021,
"param": [
{
"p": 0.03308158367872238,
"m": 0.5
},
{
"p": 0.0540042445063591,
"m": 0.5
},
{
"p": 0.18244071304798126,
"m": 0.5
},
{
"p": 0.0007368731312453747,
"m": 0.45865345001220703
},
{
"p": 0.13907982409000397,
"m": 0.5492205023765564
},
{
"p": 0.051577407866716385,
"m": 0.5463372468948364
},
{
"p": 0.04082166776061058,
"m": 0.5588632225990295
},
{
"p": 0.10357319563627243,
"m": 0.5470725893974304
},
{
"p": 0.008792983368039131,
"m": 0.5461524724960327
},
{
"p": 0.0576922781765461,
"m": 0.4489133656024933
},
{
"p": 0.05248497426509857,
"m": 0.5451558828353882
},
{
"p": 0.17231391370296478,
"m": 0.5522885322570801
},
{
"p": 0.05331255868077278,
"m": 0.5
},
{
"p": 0.050087783485651016,
"m": 0.5
}
]
},
{
"epoch": 3,
"train_loss": 3.573862314224243,
"val_loss": 1.6530308723449707,
"acc": 38.16,
"f1": [
0.4232163429260254,
0.5233470797538757,
0.058355413377285004,
0.017543850466609,
0.32429713010787964,
0.3637288808822632,
0.4335663616657257,
0.42868149280548096,
0.4009189307689667,
0.45637059211730957
],
"time": 30.13499329300066,
"param": [
{
"p": 0.0007285171886906028,
"m": 0.5
},
{
"p": 0.03573751449584961,
"m": 0.5
},
{
"p": 0.25048160552978516,
"m": 0.5
},
{
"p": 0.0007285171886906028,
"m": 0.46525946259498596
},
{
"p": 0.1498740017414093,
"m": 0.5103417634963989
},
{
"p": 0.06685233861207962,
"m": 0.5060055255889893
},
{
"p": 0.019365176558494568,
"m": 0.5488088726997375
},
{
"p": 0.1184772402048111,
"m": 0.508671224117279
},
{
"p": 0.0007285171886906028,
"m": 0.5629335641860962
},
{
"p": 0.036278605461120605,
"m": 0.4699226915836334
},
{
"p": 0.03853713721036911,
"m": 0.5605417490005493
},
{
"p": 0.1953316628932953,
"m": 0.5396356582641602
},
{
"p": 0.08615056425333023,
"m": 0.5
},
{
"p": 0.0007285171886906028,
"m": 0.5
}
]
}
]
}

View file

@ -1,278 +0,0 @@
{
"Accuracy": 34.34,
"Time": [
22.348682862000715,
8.180710240849603,
72.23280989200066
],
"Optimizer": {
"Meta": {
"optim": "Adam",
"lr": 0.01,
"epoch_start": 2
},
"Inner": {
"optim": "SGD",
"lr": 0.1,
"momentum": 0.9,
"decay": 0.0005,
"nesterov": false,
"scheduler": "cosine"
}
},
"Device": "TITAN RTX",
"Memory": [
17138.90380859375,
17742.0
],
"TF_config": "../config/wide_tf_config.json",
"Param_names": [
"Identity",
"FlipUD",
"FlipLR",
"Rotate",
"TranslateX",
"TranslateY",
"ShearX",
"ShearY",
"Contrast",
"Color",
"Brightness",
"Sharpness",
"Posterize",
"Solarize"
],
"Log": [
{
"epoch": 1,
"train_loss": 4.489777565002441,
"val_loss": 2.0644397735595703,
"acc": 30.25,
"f1": [
0.35431230068206787,
0.39719849824905396,
0.24291877448558807,
0.06161968782544136,
0.29111918807029724,
0.3131312429904938,
0.28229159116744995,
0.37438949942588806,
0.27178022265434265,
0.3040199875831604
],
"time": 10.897469792000265,
"param": [
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
}
]
},
{
"epoch": 2,
"train_loss": 4.311782360076904,
"val_loss": 1.819674015045166,
"acc": 30.26,
"f1": [
0.2959640324115753,
0.4163613021373749,
0.2822738289833069,
0.2218429297208786,
0.0,
0.1480262726545334,
0.33443331718444824,
0.36701148748397827,
0.45867088437080383,
0.24224065244197845
],
"time": 26.6465921300005,
"param": [
{
"p": 0.09921339899301529,
"m": 0.5
},
{
"p": 0.09530609101057053,
"m": 0.5
},
{
"p": 0.10358145087957382,
"m": 0.5
},
{
"p": 0.04855726286768913,
"m": 0.4479790925979614
},
{
"p": 0.09732995182275772,
"m": 0.4524693489074707
},
{
"p": 0.0790158361196518,
"m": 0.48239755630493164
},
{
"p": 0.009967563673853874,
"m": 0.5263948440551758
},
{
"p": 0.09877733886241913,
"m": 0.5562599301338196
},
{
"p": 0.05904319882392883,
"m": 0.5493900179862976
},
{
"p": 0.07935067266225815,
"m": 0.47095057368278503
},
{
"p": 0.0880078673362732,
"m": 0.5585061311721802
},
{
"p": 0.0006940862513147295,
"m": 0.4793621003627777
},
{
"p": 0.07945149391889572,
"m": 0.5
},
{
"p": 0.061703749001026154,
"m": 0.5
}
]
},
{
"epoch": 3,
"train_loss": 3.8857803344726562,
"val_loss": 1.7506368160247803,
"acc": 34.34,
"f1": [
0.4236901104450226,
0.3610314130783081,
0.17997971177101135,
0.001998001476749778,
0.3666440546512604,
0.3178409934043884,
0.3141874670982361,
0.38052088022232056,
0.4538525938987732,
0.44133463501930237
],
"time": 29.50198666400138,
"param": [
{
"p": 0.09282054007053375,
"m": 0.5
},
{
"p": 0.10438272356987,
"m": 0.5
},
{
"p": 0.10807104408740997,
"m": 0.5
},
{
"p": 0.036438439041376114,
"m": 0.42666083574295044
},
{
"p": 0.08469569683074951,
"m": 0.4813336730003357
},
{
"p": 0.07521069049835205,
"m": 0.4491669833660126
},
{
"p": 0.0007111462182365358,
"m": 0.5371455550193787
},
{
"p": 0.11513987183570862,
"m": 0.5409379005432129
},
{
"p": 0.05833856761455536,
"m": 0.5827742218971252
},
{
"p": 0.0870090126991272,
"m": 0.4446893632411957
},
{
"p": 0.09302552789449692,
"m": 0.5377444624900818
},
{
"p": 0.0007111462182365358,
"m": 0.4494289755821228
},
{
"p": 0.08437005430459976,
"m": 0.5
},
{
"p": 0.059075552970170975,
"m": 0.5
}
]
}
]
}

View file

@ -1,278 +0,0 @@
{
"Accuracy": 38.03,
"Time": [
22.767652491333138,
8.132965751023873,
73.11405312399984
],
"Optimizer": {
"Meta": {
"optim": "Adam",
"lr": 0.01,
"epoch_start": 2
},
"Inner": {
"optim": "SGD",
"lr": 0.1,
"momentum": 0.9,
"decay": 0.0005,
"nesterov": false,
"scheduler": "cosine"
}
},
"Device": "TITAN RTX",
"Memory": [
17167.12353515625,
17802.0
],
"TF_config": "../config/wide_tf_config.json",
"Param_names": [
"Identity",
"FlipUD",
"FlipLR",
"Rotate",
"TranslateX",
"TranslateY",
"ShearX",
"ShearY",
"Contrast",
"Color",
"Brightness",
"Sharpness",
"Posterize",
"Solarize"
],
"Log": [
{
"epoch": 1,
"train_loss": 4.277565002441406,
"val_loss": 2.197493314743042,
"acc": 32.58,
"f1": [
0.34772270917892456,
0.42295175790786743,
0.1367272138595581,
0.21634842455387115,
0.13553714752197266,
0.30555543303489685,
0.44574540853500366,
0.40252888202667236,
0.26542046666145325,
0.33229222893714905
],
"time": 11.39791044499907,
"param": [
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
},
{
"p": 0.0714285746216774,
"m": 0.5
}
]
},
{
"epoch": 2,
"train_loss": 3.9996418952941895,
"val_loss": 1.9231864213943481,
"acc": 29.48,
"f1": [
0.32316216826438904,
0.38425371050834656,
0.15154343843460083,
0.10792344808578491,
0.0,
0.27992621064186096,
0.38590195775032043,
0.3405665159225464,
0.4152310788631439,
0.2852252125740051
],
"time": 26.947723789999145,
"param": [
{
"p": 0.09652610123157501,
"m": 0.5
},
{
"p": 0.09903531521558762,
"m": 0.5
},
{
"p": 0.10633453726768494,
"m": 0.5
},
{
"p": 0.0694713443517685,
"m": 0.4861787259578705
},
{
"p": 0.06336431950330734,
"m": 0.44124123454093933
},
{
"p": 0.07107695192098618,
"m": 0.45915454626083374
},
{
"p": 0.10278437286615372,
"m": 0.509823739528656
},
{
"p": 0.07665775716304779,
"m": 0.42625731229782104
},
{
"p": 0.030978981405496597,
"m": 0.4918246567249298
},
{
"p": 0.04185635969042778,
"m": 0.4618586003780365
},
{
"p": 0.05446039140224457,
"m": 0.484244167804718
},
{
"p": 0.08123008906841278,
"m": 0.4911883473396301
},
{
"p": 0.10553424805402756,
"m": 0.5
},
{
"p": 0.0006892444216646254,
"m": 0.5
}
]
},
{
"epoch": 3,
"train_loss": 3.664762496948242,
"val_loss": 1.7477437257766724,
"acc": 38.03,
"f1": [
0.3838382661342621,
0.4939465820789337,
0.021194593980908394,
0.11475405842065811,
0.26196160912513733,
0.388394832611084,
0.43228811025619507,
0.41404134035110474,
0.49711447954177856,
0.4443524181842804
],
"time": 29.957323239001198,
"param": [
{
"p": 0.10492783784866333,
"m": 0.5
},
{
"p": 0.08878320455551147,
"m": 0.5
},
{
"p": 0.1139240637421608,
"m": 0.5
},
{
"p": 0.060239143669605255,
"m": 0.45184484124183655
},
{
"p": 0.06484482437372208,
"m": 0.42094942927360535
},
{
"p": 0.06524176150560379,
"m": 0.42101073265075684
},
{
"p": 0.11154413223266602,
"m": 0.4922160506248474
},
{
"p": 0.07626494020223618,
"m": 0.3707004189491272
},
{
"p": 0.011692802421748638,
"m": 0.512903094291687
},
{
"p": 0.06841086596250534,
"m": 0.45039427280426025
},
{
"p": 0.04088525474071503,
"m": 0.5021275877952576
},
{
"p": 0.07855185866355896,
"m": 0.4836328625679016
},
{
"p": 0.11398971825838089,
"m": 0.5
},
{
"p": 0.000699601077940315,
"m": 0.5
}
]
}
]
}

View file

@ -217,13 +217,17 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
if not self._fixed_mix:
self._params['mix_dist'].data = self._params['mix_dist'].data.clamp(min=0.0, max=0.999)
def loss_weight(self):
def loss_weight(self, mean_norm=False):
""" Weights for the loss.
Compute the weights for the loss of each inputs depending on wich TF was applied to them.
Should be applied to the loss before reduction.
Do not take into account the order of application of the TF. See Data_augV7.
Args:
mean_norm (bool): Wether to normalize weights by mean or by distribution. (Default: Normalize by distribution.)
Normalizing by mean, would lend an exact normalization but can lead to unstable behavior of probabilities.
Normalizing by distribution is a statistical approximation of the exact normalization. It lead to more smooth probabilities evolution but will only return 1 if mix_dist=1.
Returns:
Tensor : Loss weights.
"""
@ -238,8 +242,13 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
tmp_w.scatter_(dim=1, index=sample.view(-1,1), value=1/self._N_seqTF)
w_loss += tmp_w
w_loss = w_loss * prob/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss)
w_loss = torch.sum(w_loss,dim=1)
if mean_norm:
w_loss = w_loss * prob
w_loss = torch.sum(w_loss,dim=1)
w_loss = w_loss/w_loss.mean() #mean(w_loss)=1
else:
w_loss = w_loss * prob/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss)
w_loss = torch.sum(w_loss,dim=1)
return w_loss
def reg_loss(self, reg_factor=0.005):

View file

@ -113,9 +113,10 @@ def mixed_loss(xs, ys, model, unsup_factor=1):
# Unsupervised loss
aug_logits = model(xs)
w_loss = model['data_aug'].loss_weight() #Weight loss
log_aug = F.log_softmax(aug_logits, dim=1)
aug_loss = (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
aug_loss = F.cross_entropy(log_aug, ys , reduction='none')
aug_loss = (aug_loss * w_loss).mean()
#KL divergence loss (w/ logits) - Prediction/Distribution similarity
kl_loss = (F.softmax(sup_logits, dim=1)*(log_sup-log_aug)).sum(dim=-1)
@ -295,7 +296,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
meta_scheduler=None
if opt_param['Meta']['scheduler']=='multiStep':
meta_scheduler=torch.optim.lr_scheduler.MultiStepLR(meta_opt,
milestones=[int(epochs/3), int(epochs*2/3)]#, int(epochs*2.7/3)],
milestones=[int(epochs/3), int(epochs*2/3)],# int(epochs*2.7/3)],
gamma=3.16)#10)
elif opt_param['Meta']['scheduler'] is not None:
raise ValueError("Lr scheduler unknown : %s"%opt_param['Meta']['scheduler'])