Correction test MobileNet Brutus

This commit is contained in:
Harle, Antoine (Contracteur) 2019-12-09 10:46:53 -05:00
parent 48c3925d74
commit 6c0597e7ea
4 changed files with 140 additions and 22 deletions

View file

@ -82,7 +82,7 @@ if __name__ == "__main__":
nb_run=3 nb_run=3
accs = [] accs = []
times = [] times = []
files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx2-MagFxSh)-LeNet)-150epochs(dataug:0)-0in_it-%s.json"%str(run) for run in range(nb_run)] files = ["res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-Mag)-LeNet)-150epochs(dataug:0)-1in_it-%s.json"%str(run) for run in range(nb_run)]
for idx, file in enumerate(files): for idx, file in enumerate(files):
#legend+=str(idx)+'-'+file+'\n' #legend+=str(idx)+'-'+file+'\n'

View file

@ -50,7 +50,6 @@ class AugmentedDataset(VisionDataset):
for idx, img in enumerate(self.sup_data): for idx, img in enumerate(self.sup_data):
self.sup_data[idx]= Image.fromarray(img) #to PIL Image self.sup_data[idx]= Image.fromarray(img) #to PIL Image
self.unsup_ratio=5 #Batch size unsup = train batch size * unsup_ratio
self.unsup_data=[] self.unsup_data=[]
self.unsup_targets=[] self.unsup_targets=[]
@ -157,6 +156,120 @@ class AugmentedDataset(VisionDataset):
def __str__(self): def __str__(self):
return "CIFAR10(Sup:{}-Unsup:{}-{}TF)".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF)) return "CIFAR10(Sup:{}-Unsup:{}-{}TF)".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF))
class AugmentedDatasetV2(VisionDataset):
def __init__(self, root, train=True, transform=None, target_transform=None, download=False, subset=None):
super(AugmentedDatasetV2, self).__init__(root, transform=transform, target_transform=target_transform)
supervised_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download, transform=transform)
self.sup_data = supervised_dataset.data if not subset else supervised_dataset.data[subset[0]:subset[1]]
self.sup_targets = supervised_dataset.targets if not subset else supervised_dataset.targets[subset[0]:subset[1]]
assert len(self.sup_data)==len(self.sup_targets)
for idx, img in enumerate(self.sup_data):
self.sup_data[idx]= Image.fromarray(img) #to PIL Image
self.unsup_data=[]
self.unsup_targets=[]
self.origin_idx=[]
self.dataset_info= {
'name': 'CIFAR10',
'sup': len(self.sup_data),
'unsup': len(self.unsup_data),
'length': len(self.sup_data)+len(self.unsup_data),
}
self._TF = [
## Geometric TF ##
'Rotate',
'TranslateX',
'TranslateY',
'ShearX',
'ShearY',
'Cutout',
## Color TF ##
'Contrast',
'Color',
'Brightness',
'Sharpness',
#'Posterize',
#'Solarize',
'Invert',
'AutoContrast',
'Equalize',
]
self._op_list =[]
self.prob=0.5
for tf in self._TF:
for mag in range(1, 10):
self._op_list+=[(tf, self.prob, mag)]
self._nb_op = len(self._op_list)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
aug_img, origin_img, target = self.unsup_data[index], self.sup_data[self.origin_idx[index]], self.unsup_targets[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
#img = Image.fromarray(img)
if self.transform is not None:
aug_img = self.transform(aug_img)
origin_img = self.transform(origin_img)
if self.target_transform is not None:
target = self.target_transform(target)
return aug_img, origin_img, target
def augement_data(self, aug_copy=1):
policies = []
for op_1 in self._op_list:
for op_2 in self._op_list:
policies += [[op_1, op_2]]
for idx, image in enumerate(self.sup_data):
if idx%(self.dataset_info['sup']/5)==0: print("Augmenting data... ", idx,"/", self.dataset_info['sup'])
#if idx==10000:break
for _ in range(aug_copy):
chosen_policy = policies[np.random.choice(len(policies))]
aug_image = augmentation_transforms.apply_policy(chosen_policy, image, use_mean_std=False) #Cast en float image
#aug_image = augmentation_transforms.cutout_numpy(aug_image)
self.unsup_data+=[(aug_image*255.).astype(self.sup_data.dtype)]#Cast float image to uint8
self.unsup_targets+=[self.sup_targets[idx]]
self.origin_idx+=[idx]
#self.unsup_data=(np.array(self.unsup_data)*255.).astype(self.sup_data.dtype) #Cast float image to uint8
self.unsup_data=np.array(self.unsup_data)
assert len(self.unsup_data)==len(self.unsup_targets)
self.dataset_info['unsup']=len(self.unsup_data)
self.dataset_info['length']=self.dataset_info['sup']+self.dataset_info['unsup']
def __len__(self):
return self.dataset_info['unsup']#self.dataset_info['length']
def __str__(self):
return "CIFAR10(Sup:{}-Unsup:{}-{}TF)".format(self.dataset_info['sup'], self.dataset_info['unsup'], len(self._TF))
### Classic Dataset ### ### Classic Dataset ###
data_train = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform) data_train = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform)
#data_val = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform) #data_val = torchvision.datasets.CIFAR10("./data", train=True, download=download_data, transform=transform)

View file

@ -35,7 +35,7 @@ if __name__ == "__main__":
n_inner_iter = 1 n_inner_iter = 1
epochs = 150 epochs = 200
dataug_epoch_start=0 dataug_epoch_start=0
#model = LeNet(3,10) #model = LeNet(3,10)
@ -44,22 +44,6 @@ if __name__ == "__main__":
tf_dict = {k: TF.TF_dict[k] for k in tf_names} tf_dict = {k: TF.TF_dict[k] for k in tf_names}
t0 = time.process_time()
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=True, fixed_mag=True, shared_mag=True), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
exec_time=time.process_time() - t0
####
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
#### ####
t0 = time.process_time() t0 = time.process_time()
@ -77,6 +61,23 @@ if __name__ == "__main__":
json.dump(out, f, indent=True) json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !') print('Log :\"',f.name, '\" saved !')
####
t0 = time.process_time()
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, KLdiv=True, loss_patience=None)
exec_time=time.process_time() - t0
####
times = [x["time"] for x in log]
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times), exec_time), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
filename = "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter)
with open("res/log/%s.json" % filename, "w+") as f:
json.dump(out, f, indent=True)
print('Log :\"',f.name, '\" saved !')
''' '''
res_folder="res/brutus-tests/" res_folder="res/brutus-tests/"
epochs= 150 epochs= 150

View file

@ -629,7 +629,7 @@ def run_dist_dataug(model, epochs=1, inner_it=1, dataug_epoch_start=0):
print("Copy ", countcopy) print("Copy ", countcopy)
return log return log
def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, loss_patience=None): def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, loss_patience=None, save_sample=False):
device = next(model.parameters()).device device = next(model.parameters()).device
log = [] log = []
countcopy=0 countcopy=0
@ -796,8 +796,12 @@ def run_dist_dataugV2(model, epochs=1, inner_it=0, dataug_epoch_start=0, print_f
model.augment(mode=True) model.augment(mode=True)
if inner_it != 0: high_grad_track = True if inner_it != 0: high_grad_track = True
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch)) try:
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch)) viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
except:
print("Couldn't save finals samples")
pass
#print("Copy ", countcopy) #print("Copy ", countcopy)
return log return log