mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 04:00:46 +02:00
Resultats avec early stop sur data test
This commit is contained in:
parent
93d91815f5
commit
67f99f3354
85 changed files with 42780 additions and 6607 deletions
|
@ -64,12 +64,12 @@ if __name__ == "__main__":
|
|||
print('-'*9)
|
||||
'''
|
||||
#### Augmented Model ####
|
||||
#'''
|
||||
'''
|
||||
t0 = time.process_time()
|
||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||
#tf_dict = TF.TF_dict
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device)
|
||||
#aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
aug_model = Augmented_model(Data_augV4(TF_dict=tf_dict, N_TF=2, mix_dist=0.0), WideResNet(num_classes=10, wrn_size=160)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=1, loss_patience=10)
|
||||
|
@ -86,15 +86,15 @@ if __name__ == "__main__":
|
|||
|
||||
print('Execution Time : %.00f (s?)'%(time.process_time() - t0))
|
||||
print('-'*9)
|
||||
#'''
|
||||
#### TF number tests ####
|
||||
'''
|
||||
#### TF number tests ####
|
||||
#'''
|
||||
res_folder="res/TF_nb_tests/"
|
||||
epochs= 200
|
||||
inner_its = [10]
|
||||
epochs= 100
|
||||
inner_its = [0, 10]
|
||||
dataug_epoch_starts= [0]
|
||||
TF_nb = range(1,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||||
N_seq_TF= [1] #[1, 2, 3, 4]
|
||||
TF_nb = [len(TF.TF_dict)] #range(10,len(TF.TF_dict)+1) #[len(TF.TF_dict)]
|
||||
N_seq_TF= [2, 3, 4, 6]
|
||||
|
||||
try:
|
||||
os.mkdir(res_folder)
|
||||
|
@ -114,17 +114,17 @@ if __name__ == "__main__":
|
|||
aug_model = Augmented_model(Data_augV4(TF_dict=ntf_dict, N_TF=n_tf, mix_dist=0.0), LeNet(3,10)).to(device)
|
||||
print(str(aug_model), 'on', device_name)
|
||||
#run_simple_dataug(inner_it=n_inner_iter, epochs=epochs)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=10)
|
||||
log= run_dist_dataugV2(model=aug_model, epochs=epochs, inner_it=n_inner_iter, dataug_epoch_start=dataug_epoch_start, print_freq=10, loss_patience=None)
|
||||
|
||||
####
|
||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter))
|
||||
plot_res(log, fig_name=res_folder+"{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), param_names=keys)
|
||||
print('-'*9)
|
||||
times = [x["time"] for x in log]
|
||||
out = {"Accuracy": max([x["acc"] for x in log]), "Time": (np.mean(times),np.std(times)), "Device": device_name, "Param_names": aug_model.TF_names(), "Log": log}
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in (ms):", out["Time"][0], "+/-", out["Time"][1])
|
||||
print(str(aug_model),": acc", out["Accuracy"], "in (s?):", out["Time"][0], "+/-", out["Time"][1])
|
||||
with open(res_folder+"log/%s.json" % "{}-{} epochs (dataug:{})- {} in_it".format(str(aug_model),epochs,dataug_epoch_start,n_inner_iter), "w+") as f:
|
||||
json.dump(out, f, indent=True)
|
||||
print('Log :\"',f.name, '\" saved !')
|
||||
print('-'*9)
|
||||
|
||||
'''
|
||||
#'''
|
Loading…
Add table
Add a link
Reference in a new issue