diff --git a/higher/smart_aug/benchmark.py b/higher/smart_aug/benchmark.py index 623095b..d4d34be 100644 --- a/higher/smart_aug/benchmark.py +++ b/higher/smart_aug/benchmark.py @@ -97,6 +97,7 @@ if __name__ == "__main__": for m_setup in mag_setup: torch.cuda.reset_max_memory_allocated() #reset_peak_stats + torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() model = getattr(model_type, model_name)(pretrained=False) @@ -126,7 +127,8 @@ if __name__ == "__main__": save_sample_freq=None) exec_time=time.perf_counter() - t0 - max_cached = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB + max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) + max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB #### print('-'*9) times = [x["time"] for x in log] @@ -134,7 +136,7 @@ if __name__ == "__main__": "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, - "Memory": max_cached, + "Memory": [max_allocated, max_cached], "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) @@ -155,6 +157,7 @@ if __name__ == "__main__": for model_name in model_list[model_type]: for run in range(nb_run): torch.cuda.reset_max_memory_allocated() #reset_peak_stats + torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() model = getattr(model_type, model_name)(pretrained=False).to(device) @@ -164,7 +167,8 @@ if __name__ == "__main__": log= train_classic(model=model, opt_param=optim_param, epochs=epochs, print_freq=epochs/4) exec_time=time.perf_counter() - t0 - max_cached = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB + max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) + max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB #### print('-'*9) times = [x["time"] for x in log] @@ -172,7 +176,7 @@ if __name__ == "__main__": "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, - "Memory": max_cached, + "Memory": [max_allocated, max_cached], #"Rand_Aug": rand_aug, "Log": log} print(model_name,": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1]) diff --git a/higher/smart_aug/test_dataug.py b/higher/smart_aug/test_dataug.py index d4b9554..8084fa2 100755 --- a/higher/smart_aug/test_dataug.py +++ b/higher/smart_aug/test_dataug.py @@ -82,7 +82,7 @@ if __name__ == "__main__": } #Parameters n_inner_iter = 1 - epochs = 150 + epochs = 2 dataug_epoch_start=0 optim_param={ 'Meta':{ @@ -147,6 +147,7 @@ if __name__ == "__main__": #### Augmented Model #### if 'aug_model' in tasks: torch.cuda.reset_max_memory_allocated() #reset_peak_stats + torch.cuda.reset_max_memory_cached() #reset_peak_stats t0 = time.perf_counter() tf_dict = {k: TF.TF_dict[k] for k in tf_names} @@ -163,10 +164,11 @@ if __name__ == "__main__": print_freq=1, unsup_loss=1, hp_opt=False, - save_sample_freq=1) + save_sample_freq=None) exec_time=time.perf_counter() - t0 - max_cached = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB + max_allocated = torch.cuda.max_memory_allocated()/(1024.0 * 1024.0) + max_cached = torch.cuda.max_memory_cached()/(1024.0 * 1024.0) #torch.cuda.max_memory_reserved() #MB #### print('-'*9) times = [x["time"] for x in log] @@ -174,7 +176,7 @@ if __name__ == "__main__": "Time": (np.mean(times),np.std(times), exec_time), 'Optimizer': optim_param, "Device": device_name, - "Memory": max_cached, + "Memory": [max_allocated, max_cached], "Param_names": aug_model.TF_names(), "Log": log} print(str(aug_model),": acc", out["Accuracy"], "in:", out["Time"][0], "+/-", out["Time"][1])