mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
RandAugment
This commit is contained in:
parent
7221142a9a
commit
6277e268c1
3 changed files with 407 additions and 73 deletions
|
@ -1,6 +1,6 @@
|
|||
""" Dataset definition.
|
||||
|
||||
MNIST / CIFAR10
|
||||
MNIST / CIFAR10 / CIFAR100 / SVHN / ImageNet
|
||||
"""
|
||||
import torch
|
||||
from torch.utils.data.dataset import ConcatDataset
|
||||
|
@ -37,9 +37,16 @@ transform_train = torchvision.transforms.Compose([
|
|||
#transforms.RandomVerticalFlip(),
|
||||
torchvision.transforms.ToTensor(),
|
||||
])
|
||||
#from RandAugment import RandAugment
|
||||
|
||||
## RandAugment ##
|
||||
from RandAugment import RandAugment
|
||||
# Add RandAugment with N, M(hyperparameter)
|
||||
#transform_train.transforms.insert(0, RandAugment(n=2, m=30))
|
||||
rand_aug={'N': 2, 'M': 1}
|
||||
#rand_aug={'N': 2, 'M': 9./30} #RN-ImageNet
|
||||
#rand_aug={'N': 3, 'M': 5./30} #WRN-CIFAR10
|
||||
#rand_aug={'N': 2, 'M': 14./30} #WRN-CIFAR100
|
||||
#rand_aug={'N': 3, 'M': 7./30} #WRN-SVHN
|
||||
transform_train.transforms.insert(0, RandAugment(n=rand_aug['N'], m=rand_aug['M']))
|
||||
|
||||
### Classic Dataset ###
|
||||
|
||||
|
@ -50,7 +57,7 @@ transform_train = torchvision.transforms.Compose([
|
|||
|
||||
#CIFAR
|
||||
data_train = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
#data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
|
||||
data_val = torchvision.datasets.CIFAR10(dataroot, train=True, download=download_data, transform=transform)
|
||||
data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=download_data, transform=transform)
|
||||
|
||||
#data_train = torchvision.datasets.CIFAR100(dataroot, train=True, download=download_data, transform=transform_train)
|
||||
|
@ -72,32 +79,18 @@ data_test = torchvision.datasets.CIFAR10(dataroot, train=False, download=downloa
|
|||
|
||||
#Validation set size [0, 1]
|
||||
valid_size=0.1
|
||||
#train_subset_indices=range(int(len(data_train)*(1-valid_size)))
|
||||
#val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
|
||||
train_subset_indices=range(int(len(data_train)*(1-valid_size)))
|
||||
val_subset_indices=range(int(len(data_train)*(1-valid_size)),len(data_train))
|
||||
#train_subset_indices=range(BATCH_SIZE*10)
|
||||
#val_subset_indices=range(BATCH_SIZE*10, BATCH_SIZE*20)
|
||||
|
||||
#from torch.utils.data import SubsetRandomSampler
|
||||
#dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
#dl_val = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
from torch.utils.data import SubsetRandomSampler
|
||||
dl_train = torch.utils.data.DataLoader(data_train, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(train_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(data_val, batch_size=BATCH_SIZE, shuffle=False, sampler=SubsetRandomSampler(val_subset_indices), num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_test = torch.utils.data.DataLoader(data_test, batch_size=TEST_SIZE, shuffle=False, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
#Cross Validation
|
||||
'''
|
||||
from skorch.dataset import CVSplit
|
||||
import numpy as np
|
||||
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
|
||||
|
||||
def next_CVSplit():
|
||||
|
||||
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
|
||||
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
return dl_train, dl_val
|
||||
|
||||
dl_train, dl_val = next_CVSplit()
|
||||
'''
|
||||
import numpy as np
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
from sklearn.model_selection import StratifiedShuffleSplit
|
||||
|
@ -134,7 +127,7 @@ class CVSplit(object):
|
|||
else:
|
||||
cv_cls = ShuffleSplit
|
||||
|
||||
self._cv= cv_cls(test_size=val_size, random_state=0)
|
||||
self._cv= cv_cls(test_size=val_size, random_state=0) #Random state w/ fixed seed
|
||||
|
||||
def next_split(self):
|
||||
""" Get next cross-validation split.
|
||||
|
@ -157,4 +150,21 @@ class CVSplit(object):
|
|||
return dl_train, dl_val
|
||||
|
||||
cvs = CVSplit(data_train, val_size=valid_size)
|
||||
dl_train, dl_val = cvs.next_split()
|
||||
dl_train, dl_val = cvs.next_split()
|
||||
'''
|
||||
|
||||
'''
|
||||
from skorch.dataset import CVSplit
|
||||
import numpy as np
|
||||
cvs = CVSplit(cv=valid_size, stratified=True) #Stratified =True for unbalanced dataset #ShuffleSplit
|
||||
|
||||
def next_CVSplit():
|
||||
|
||||
train_subset, val_subset = cvs(data_train, y=np.array(data_train.targets))
|
||||
dl_train = torch.utils.data.DataLoader(train_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
dl_val = torch.utils.data.DataLoader(val_subset, batch_size=BATCH_SIZE, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
|
||||
|
||||
return dl_train, dl_val
|
||||
|
||||
dl_train, dl_val = next_CVSplit()
|
||||
'''
|
Loading…
Add table
Add a link
Reference in a new issue