mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 12:10:45 +02:00
Test brutus suite
This commit is contained in:
parent
a772d13b83
commit
61dad1ad78
4 changed files with 90 additions and 32 deletions
|
@ -28,6 +28,31 @@ TF_dict={ #Dataugv4
|
|||
#'Equalize': (lambda mag: None),
|
||||
}
|
||||
'''
|
||||
'''
|
||||
TF_dict={ #Dataugv5 #AutoAugment
|
||||
## Geometric TF ##
|
||||
'Identity' : (lambda x, mag: x),
|
||||
'FlipUD' : (lambda x, mag: flipUD(x)),
|
||||
'FlipLR' : (lambda x, mag: flipLR(x)),
|
||||
'Rotate': (lambda x, mag: rotate(x, angle=rand_floats(size=x.shape[0], mag=mag, maxval=30))),
|
||||
'TranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=0))),
|
||||
'TranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=20), zero_pos=1))),
|
||||
'ShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=0))),
|
||||
'ShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3), zero_pos=1))),
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
'Brightness':(lambda x, mag: brightness(x, brightness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
'Sharpness':(lambda x, mag: sharpeness(x, sharpness_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
'Posterize': (lambda x, mag: posterize(x, bits=rand_floats(size=x.shape[0], mag=mag, minval=4., maxval=8.))),#Perte du gradient
|
||||
'Solarize': (lambda x, mag: solarize(x, thresholds=rand_floats(size=x.shape[0], mag=mag, minval=1/256., maxval=256/256.))), #Perte du gradient #=>Image entre [0,1] #Pas opti pour des batch
|
||||
|
||||
#Non fonctionnel
|
||||
#'Auto_Contrast': (lambda mag: None), #Pas opti pour des batch (Super lent)
|
||||
#'Equalize': (lambda mag: None),
|
||||
}
|
||||
'''
|
||||
TF_dict={ #Dataugv5
|
||||
## Geometric TF ##
|
||||
'Identity' : (lambda x, mag: x),
|
||||
|
@ -45,6 +70,11 @@ TF_dict={ #Dataugv5
|
|||
'BShearX': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3*3), zero_pos=0))),
|
||||
'BShearY': (lambda x, mag: shear(x, shear=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, maxval=0.3*3), zero_pos=1))),
|
||||
|
||||
'BadTranslateX': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=0))),
|
||||
'BadTranslateX_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=0))),
|
||||
'BadTranslateY': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=20*2, maxval=20*3), zero_pos=1))),
|
||||
'BadTranslateY_neg': (lambda x, mag: translate(x, translation=zero_stack(rand_floats(size=(x.shape[0],), mag=mag, minval=-20*3, maxval=-20*2), zero_pos=1))),
|
||||
|
||||
## Color TF (Expect image in the range of [0, 1]) ##
|
||||
'Contrast': (lambda x, mag: contrast(x, contrast_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
'Color':(lambda x, mag: color(x, color_factor=rand_floats(size=x.shape[0], mag=mag, minval=0.1, maxval=1.9))),
|
||||
|
@ -70,15 +100,15 @@ def float_image(int_image):
|
|||
#def rand_inverse(value):
|
||||
# return value if random.random() < 0.5 else -value
|
||||
|
||||
def rand_int(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
||||
real_max = int_parameter(mag, maxval=maxval)
|
||||
if not minval : minval = -real_max
|
||||
return random.randint(minval, real_max)
|
||||
#def rand_int(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
||||
# real_max = int_parameter(mag, maxval=maxval)
|
||||
# if not minval : minval = -real_max
|
||||
# return random.randint(minval, real_max)
|
||||
|
||||
def rand_float(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
||||
real_max = float_parameter(mag, maxval=maxval)
|
||||
if not minval : minval = -real_max
|
||||
return random.uniform(minval, real_max)
|
||||
#def rand_float(mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
||||
# real_max = float_parameter(mag, maxval=maxval)
|
||||
# if not minval : minval = -real_max
|
||||
# return random.uniform(minval, real_max)
|
||||
|
||||
def rand_floats(size, mag, maxval, minval=None): #[(-maxval,minval), maxval]
|
||||
real_max = float_parameter(mag, maxval=maxval)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue