mirror of
https://github.com/AntoineHX/smart_augmentation.git
synced 2025-05-04 20:20:46 +02:00
Ameliorations mineurs + clean up
This commit is contained in:
parent
cd4b0405b9
commit
5dd0e6ad82
3 changed files with 35 additions and 69 deletions
|
@ -537,19 +537,30 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
|
|
||||||
self._data_augmentation = True
|
self._data_augmentation = True
|
||||||
|
|
||||||
|
#TF
|
||||||
self._TF_dict = TF_dict
|
self._TF_dict = TF_dict
|
||||||
self._TF= list(self._TF_dict.keys())
|
self._TF= list(self._TF_dict.keys())
|
||||||
self._nb_tf= len(self._TF)
|
self._nb_tf= len(self._TF)
|
||||||
|
|
||||||
self._N_seqTF = N_TF
|
self._N_seqTF = N_TF
|
||||||
|
|
||||||
|
#Mag
|
||||||
self._shared_mag = shared_mag
|
self._shared_mag = shared_mag
|
||||||
self._fixed_mag = fixed_mag
|
self._fixed_mag = fixed_mag
|
||||||
|
|
||||||
|
#Distribution
|
||||||
|
self._fixed_prob=fixed_prob
|
||||||
|
self._samples = []
|
||||||
|
|
||||||
|
self._mix_dist = False
|
||||||
|
if mix_dist != 0.0: #Mix dist
|
||||||
|
self._mix_dist = True
|
||||||
|
|
||||||
self._fixed_mix=True
|
self._fixed_mix=True
|
||||||
if mix_dist is None: #Learn Mix dist
|
if mix_dist is None: #Learn Mix dist
|
||||||
self._fixed_mix = False
|
self._fixed_mix = False
|
||||||
mix_dist=0.5
|
mix_dist=0.5
|
||||||
|
|
||||||
|
#Params
|
||||||
init_mag = float(TF.PARAMETER_MAX) if self._fixed_mag else float(TF.PARAMETER_MAX)/2
|
init_mag = float(TF.PARAMETER_MAX) if self._fixed_mag else float(TF.PARAMETER_MAX)/2
|
||||||
self._params = nn.ParameterDict({
|
self._params = nn.ParameterDict({
|
||||||
"prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #Distribution prob uniforme
|
"prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #Distribution prob uniforme
|
||||||
|
@ -562,14 +573,6 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
if tf in self._TF: self._params['mag'].data[self._TF.index(tf)]=float(TF.PARAMETER_MAX) #TF fixe a max parameter
|
if tf in self._TF: self._params['mag'].data[self._TF.index(tf)]=float(TF.PARAMETER_MAX) #TF fixe a max parameter
|
||||||
#for t in TF.TF_no_mag: self._params['mag'][self._TF.index(t)].data-=self._params['mag'][self._TF.index(t)].data #Mag inutile pour les TF ignore_mag
|
#for t in TF.TF_no_mag: self._params['mag'][self._TF.index(t)].data-=self._params['mag'][self._TF.index(t)].data #Mag inutile pour les TF ignore_mag
|
||||||
|
|
||||||
#Distribution
|
|
||||||
self._fixed_prob=fixed_prob
|
|
||||||
self._samples = []
|
|
||||||
self._mix_dist = False
|
|
||||||
if mix_dist != 0.0: #Mix dist
|
|
||||||
self._mix_dist = True
|
|
||||||
#self._mix_factor = max(min(mix_dist, 0.999), 0.0)
|
|
||||||
|
|
||||||
#Mag regularisation
|
#Mag regularisation
|
||||||
if not self._fixed_mag:
|
if not self._fixed_mag:
|
||||||
if self._shared_mag :
|
if self._shared_mag :
|
||||||
|
@ -595,7 +598,6 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
else:
|
else:
|
||||||
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
||||||
mix_dist = self._params["mix_dist"].detach() if self._fixed_mix else self._params["mix_dist"]
|
mix_dist = self._params["mix_dist"].detach() if self._fixed_mix else self._params["mix_dist"]
|
||||||
#self._distrib = (self._mix_factor*prob+(1-self._mix_factor)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor
|
|
||||||
self._distrib = (mix_dist*prob+(1-mix_dist)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor
|
self._distrib = (mix_dist*prob+(1-mix_dist)*uniforme_dist)#.softmax(dim=1) #Mix distrib reel / uniforme avec mix_factor
|
||||||
|
|
||||||
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*self._distrib)
|
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*self._distrib)
|
||||||
|
@ -613,14 +615,13 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
|
|
||||||
for tf_idx in range(self._nb_tf):
|
for tf_idx in range(self._nb_tf):
|
||||||
mask = sampled_TF==tf_idx #Create selection mask
|
mask = sampled_TF==tf_idx #Create selection mask
|
||||||
smp_x = x[mask] #torch.masked_select() ? (NEcessite d'expand le mask au meme dim)
|
smp_x = x[mask] #torch.masked_select() ? (Necessite d'expand le mask au meme dim)
|
||||||
|
|
||||||
if smp_x.shape[0]!=0: #if there's data to TF
|
if smp_x.shape[0]!=0: #if there's data to TF
|
||||||
magnitude=self._params["mag"] if self._shared_mag else self._params["mag"][tf_idx]
|
magnitude=self._params["mag"] if self._shared_mag else self._params["mag"][tf_idx]
|
||||||
if self._fixed_mag: magnitude=magnitude.detach() #Fmodel tente systematiquement de tracker les gradient de tout les param
|
if self._fixed_mag: magnitude=magnitude.detach() #Fmodel tente systematiquement de tracker les gradient de tout les param
|
||||||
|
|
||||||
tf=self._TF[tf_idx]
|
tf=self._TF[tf_idx]
|
||||||
#print(magnitude)
|
|
||||||
|
|
||||||
#In place
|
#In place
|
||||||
#x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
|
#x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
|
||||||
|
@ -638,13 +639,11 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
if soft :
|
if soft :
|
||||||
self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible
|
self._params['prob'].data=F.softmax(self._params['prob'].data, dim=0) #Trop 'soft', bloque en dist uniforme si lr trop faible
|
||||||
else:
|
else:
|
||||||
#self._params['prob'].data = F.relu(self._params['prob'].data)
|
|
||||||
self._params['prob'].data = self._params['prob'].data.clamp(min=1/(self._nb_tf*100),max=1.0)
|
self._params['prob'].data = self._params['prob'].data.clamp(min=1/(self._nb_tf*100),max=1.0)
|
||||||
self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1
|
self._params['prob'].data = self._params['prob']/sum(self._params['prob']) #Contrainte sum(p)=1
|
||||||
|
|
||||||
if not self._fixed_mag:
|
if not self._fixed_mag:
|
||||||
self._params['mag'].data = self._params['mag'].data.clamp(min=TF.PARAMETER_MIN, max=TF.PARAMETER_MAX)
|
self._params['mag'].data = self._params['mag'].data.clamp(min=TF.PARAMETER_MIN, max=TF.PARAMETER_MAX)
|
||||||
#self._params['mag'].data = F.relu(self._params['mag'].data) - F.relu(self._params['mag'].data - TF.PARAMETER_MAX)
|
|
||||||
|
|
||||||
if not self._fixed_mix:
|
if not self._fixed_mix:
|
||||||
self._params['mix_dist'].data = self._params['mix_dist'].data.clamp(min=0.0, max=0.999)
|
self._params['mix_dist'].data = self._params['mix_dist'].data.clamp(min=0.0, max=0.999)
|
||||||
|
@ -653,12 +652,6 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
if len(self._samples)==0 : return 1 #Pas d'echantillon = pas de ponderation
|
if len(self._samples)==0 : return 1 #Pas d'echantillon = pas de ponderation
|
||||||
|
|
||||||
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
prob = self._params["prob"].detach() if self._fixed_prob else self._params["prob"]
|
||||||
# 1 seule TF
|
|
||||||
#self._sample = self._samples[-1]
|
|
||||||
#w_loss = torch.zeros((self._sample.shape[0],self._nb_tf), device=self._sample.device)
|
|
||||||
#w_loss.scatter_(dim=1, index=self._sample.view(-1,1), value=1)
|
|
||||||
#w_loss = w_loss * self._params["prob"]/self._distrib #Ponderation par les proba (divisee par la distrib pour pas diminuer la loss)
|
|
||||||
#w_loss = torch.sum(w_loss,dim=1)
|
|
||||||
|
|
||||||
#Plusieurs TF sequentielles (Attention ne prend pas en compte ordre !)
|
#Plusieurs TF sequentielles (Attention ne prend pas en compte ordre !)
|
||||||
w_loss = torch.zeros((self._samples[0].shape[0],self._nb_tf), device=self._samples[0].device)
|
w_loss = torch.zeros((self._samples[0].shape[0],self._nb_tf), device=self._samples[0].device)
|
||||||
|
@ -672,7 +665,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
|
||||||
return w_loss
|
return w_loss
|
||||||
|
|
||||||
def reg_loss(self, reg_factor=0.005):
|
def reg_loss(self, reg_factor=0.005):
|
||||||
if self._fixed_mag: # or self._fixed_prob: #Pas de regularisation si trop peu de DOF
|
if self._fixed_mag:
|
||||||
return torch.tensor(0)
|
return torch.tensor(0)
|
||||||
else:
|
else:
|
||||||
#return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean')
|
#return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean')
|
||||||
|
@ -1109,9 +1102,6 @@ class Augmented_model(nn.Module):
|
||||||
|
|
||||||
self.augment(mode=True)
|
self.augment(mode=True)
|
||||||
|
|
||||||
#def initialize(self):
|
|
||||||
# self._mods['model'].initialize()
|
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self._mods['model'](self._mods['data_aug'](x))
|
return self._mods['model'](self._mods['data_aug'](x))
|
||||||
|
|
||||||
|
@ -1128,7 +1118,6 @@ class Augmented_model(nn.Module):
|
||||||
|
|
||||||
def eval(self):
|
def eval(self):
|
||||||
return self.train(mode=False)
|
return self.train(mode=False)
|
||||||
#super(Augmented_model, self).eval()
|
|
||||||
|
|
||||||
def items(self):
|
def items(self):
|
||||||
"""Return an iterable of the ModuleDict key/value pairs.
|
"""Return an iterable of the ModuleDict key/value pairs.
|
||||||
|
|
|
@ -171,7 +171,7 @@ if __name__ == "__main__":
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
|
|
||||||
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
tf_dict = {k: TF.TF_dict[k] for k in tf_names}
|
||||||
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=0.8, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
aug_model = Augmented_model(Data_augV5(TF_dict=tf_dict, N_TF=3, mix_dist=1.0, fixed_prob=False, fixed_mag=False, shared_mag=False), model).to(device)
|
||||||
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
|
||||||
|
|
||||||
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
print("{} on {} for {} epochs - {} inner_it".format(str(aug_model), device_name, epochs, n_inner_iter))
|
||||||
|
@ -182,8 +182,7 @@ if __name__ == "__main__":
|
||||||
opt_param=optim_param,
|
opt_param=optim_param,
|
||||||
print_freq=1,
|
print_freq=1,
|
||||||
KLdiv=True,
|
KLdiv=True,
|
||||||
hp_opt=True,
|
hp_opt=False)
|
||||||
loss_patience=None)
|
|
||||||
|
|
||||||
exec_time=time.process_time() - t0
|
exec_time=time.process_time() - t0
|
||||||
####
|
####
|
||||||
|
|
|
@ -823,11 +823,9 @@ def run_dist_dataugV2(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
#print("Copy ", countcopy)
|
#print("Copy ", countcopy)
|
||||||
return log
|
return log
|
||||||
|
|
||||||
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, loss_patience=None, save_sample=False):
|
def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start=0, print_freq=1, KLdiv=False, hp_opt=False, save_sample=False):
|
||||||
device = next(model.parameters()).device
|
device = next(model.parameters()).device
|
||||||
log = []
|
log = []
|
||||||
countcopy=0
|
|
||||||
val_loss=torch.tensor(0) #Necessaire si pas de metastep sur une epoch
|
|
||||||
dl_val_it = iter(dl_val)
|
dl_val_it = iter(dl_val)
|
||||||
|
|
||||||
high_grad_track = True
|
high_grad_track = True
|
||||||
|
@ -837,11 +835,6 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
model.augment(mode=False)
|
model.augment(mode=False)
|
||||||
high_grad_track = False
|
high_grad_track = False
|
||||||
|
|
||||||
val_loss_monitor= None
|
|
||||||
if loss_patience != None :
|
|
||||||
if dataug_epoch_start==-1: val_loss_monitor = loss_monitor(patience=loss_patience, end_train=2) #1st limit = dataug start
|
|
||||||
else: val_loss_monitor = loss_monitor(patience=loss_patience) #Val loss monitor (Not on val data : used by Dataug... => Test data)
|
|
||||||
|
|
||||||
## Optimizers ##
|
## Optimizers ##
|
||||||
#Inner Opt
|
#Inner Opt
|
||||||
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
inner_opt = torch.optim.SGD(model['model']['original'].parameters(), lr=opt_param['Inner']['lr'], momentum=opt_param['Inner']['momentum']) #lr=1e-2 / momentum=0.9
|
||||||
|
@ -859,16 +852,12 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
|
param_group[param]=torch.tensor(param_group[param]).to(device).requires_grad_()
|
||||||
hyper_param += [param_group[param]]
|
hyper_param += [param_group[param]]
|
||||||
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
|
meta_opt = torch.optim.Adam(hyper_param, lr=opt_param['Meta']['lr']) #lr=1e-2
|
||||||
#print(len(model['model']['functional']._fast_params))
|
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
meta_opt.zero_grad()
|
meta_opt.zero_grad()
|
||||||
|
|
||||||
for epoch in range(1, epochs+1):
|
for epoch in range(1, epochs+1):
|
||||||
#print_torch_mem("Start epoch "+str(epoch))
|
|
||||||
#print(high_grad_track, fmodel._data_augmentation, len(fmodel._fast_params))
|
|
||||||
t0 = time.process_time()
|
t0 = time.process_time()
|
||||||
#with higher.innerloop_ctx(model, inner_opt, copy_initial_weights=True, override=opt_param, track_higher_grads=high_grad_track) as (fmodel, diffopt):
|
|
||||||
|
|
||||||
for i, (xs, ys) in enumerate(dl_train):
|
for i, (xs, ys) in enumerate(dl_train):
|
||||||
xs, ys = xs.to(device), ys.to(device)
|
xs, ys = xs.to(device), ys.to(device)
|
||||||
|
@ -900,24 +889,16 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
aug_loss=0
|
aug_loss=0
|
||||||
w_loss = model['data_aug'].loss_weight() #Weight loss
|
w_loss = model['data_aug'].loss_weight() #Weight loss
|
||||||
|
|
||||||
#if epoch>50: #debut differe ?
|
|
||||||
#KL div w/ logits - Similarite predictions (distributions)
|
#KL div w/ logits - Similarite predictions (distributions)
|
||||||
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
|
aug_loss = F.softmax(sup_logits, dim=1)*(log_sup-log_aug)
|
||||||
aug_loss = aug_loss.sum(dim=-1)
|
aug_loss = aug_loss.sum(dim=-1)
|
||||||
#aug_loss = F.kl_div(aug_logits, sup_logits, reduction='none')
|
|
||||||
aug_loss = (w_loss * aug_loss).mean()
|
aug_loss = (w_loss * aug_loss).mean()
|
||||||
|
|
||||||
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
|
aug_loss += (F.cross_entropy(log_aug, ys , reduction='none') * w_loss).mean()
|
||||||
|
|
||||||
unsupp_coeff = 1
|
unsupp_coeff = 1
|
||||||
loss += aug_loss * unsupp_coeff
|
loss += aug_loss * unsupp_coeff
|
||||||
|
|
||||||
#to visualize computational graph
|
#print_graph(loss) #to visualize computational graph
|
||||||
#print_graph(loss)
|
|
||||||
|
|
||||||
#loss.backward(retain_graph=True)
|
|
||||||
#print(fmodel['model']._params['b4'].grad)
|
|
||||||
#print('prob grad', fmodel['data_aug']['prob'].grad)
|
|
||||||
|
|
||||||
#t = time.process_time()
|
#t = time.process_time()
|
||||||
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
diffopt.step(loss) #(opt.zero_grad, loss.backward, opt.step)
|
||||||
|
@ -928,14 +909,14 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
#print("meta")
|
#print("meta")
|
||||||
|
|
||||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
|
||||||
#print_graph(val_loss)
|
#print_graph(val_loss) #to visualize computational graph
|
||||||
|
|
||||||
val_loss.backward()
|
val_loss.backward()
|
||||||
|
|
||||||
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
torch.nn.utils.clip_grad_norm_(model['data_aug'].parameters(), max_norm=10, norm_type=2) #Prevent exploding grad with RNN
|
||||||
|
|
||||||
meta_opt.step()
|
meta_opt.step()
|
||||||
model['data_aug'].adjust_param(soft=False) #Contrainte sum(proba)=1
|
model['data_aug'].adjust_param(soft=True) #Contrainte sum(proba)=1
|
||||||
|
|
||||||
if hp_opt:
|
if hp_opt:
|
||||||
for param_group in diffopt.param_groups:
|
for param_group in diffopt.param_groups:
|
||||||
|
@ -949,11 +930,16 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
|
|
||||||
tf = time.process_time()
|
tf = time.process_time()
|
||||||
|
|
||||||
#viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
|
if save_sample:
|
||||||
#viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
|
try:
|
||||||
|
viz_sample_data(imgs=xs, labels=ys, fig_name='samples/data_sample_epoch{}_noTF'.format(epoch))
|
||||||
|
viz_sample_data(imgs=model['data_aug'](xs), labels=ys, fig_name='samples/data_sample_epoch{}'.format(epoch))
|
||||||
|
except:
|
||||||
|
print("Couldn't save samples epoch"+epoch)
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
if(not high_grad_track):
|
if(not val_loss):
|
||||||
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val)
|
||||||
|
|
||||||
|
|
||||||
|
@ -961,7 +947,6 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
#### Log ####
|
#### Log ####
|
||||||
#print(type(model['data_aug']) is dataug.Data_augV5)
|
|
||||||
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
param = [{'p': p.item(), 'm':model['data_aug']['mag'].item()} for p in model['data_aug']['prob']] if model['data_aug']._shared_mag else [{'p': p.item(), 'm': m.item()} for p, m in zip(model['data_aug']['prob'], model['data_aug']['mag'])]
|
||||||
data={
|
data={
|
||||||
"epoch": epoch,
|
"epoch": epoch,
|
||||||
|
@ -985,24 +970,18 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
print('Train loss :',loss.item(), '/ val loss', val_loss.item())
|
||||||
print('Accuracy :', max([x["acc"] for x in log]))
|
print('Accuracy :', max([x["acc"] for x in log]))
|
||||||
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
print('Data Augmention : {} (Epoch {})'.format(model._data_augmentation, dataug_epoch_start))
|
||||||
print('TF Proba :', model['data_aug']['prob'].data)
|
if not model['data_aug']._fixed_prob: print('TF Proba :', model['data_aug']['prob'].data)
|
||||||
#print('proba grad',model['data_aug']['prob'].grad)
|
#print('proba grad',model['data_aug']['prob'].grad)
|
||||||
print('TF Mag :', model['data_aug']['mag'].data)
|
if not model['data_aug']._fixed_mag: print('TF Mag :', model['data_aug']['mag'].data)
|
||||||
#print('Mag grad',model['data_aug']['mag'].grad)
|
#print('Mag grad',model['data_aug']['mag'].grad)
|
||||||
print('Mix:', model['data_aug']['mix_dist'].data)
|
if not model['data_aug']._fixed_mix: print('Mix:', model['data_aug']['mix_dist'].item())
|
||||||
#print('Reg loss:', model['data_aug'].reg_loss().item())
|
#print('Reg loss:', model['data_aug'].reg_loss().item())
|
||||||
#print('Aug loss', aug_loss.item())
|
|
||||||
if hp_opt :
|
if hp_opt :
|
||||||
for param_group in diffopt.param_groups:
|
for param_group in diffopt.param_groups:
|
||||||
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
|
print('Opt param - lr:', param_group['lr'].item(),'- momentum:', param_group['momentum'].item())
|
||||||
#############
|
#############
|
||||||
if val_loss_monitor :
|
if not model.is_augmenting() and (epoch == dataug_epoch_start):
|
||||||
model.eval()
|
|
||||||
val_loss_monitor.register(test_loss)#val_loss.item())
|
|
||||||
if val_loss_monitor.end_training(): break #Stop training
|
|
||||||
model.train()
|
|
||||||
|
|
||||||
if not model.is_augmenting() and (epoch == dataug_epoch_start or (val_loss_monitor and val_loss_monitor.limit_reached()==1)):
|
|
||||||
print('Starting Data Augmention...')
|
print('Starting Data Augmention...')
|
||||||
dataug_epoch_start = epoch
|
dataug_epoch_start = epoch
|
||||||
model.augment(mode=True)
|
model.augment(mode=True)
|
||||||
|
@ -1015,5 +994,4 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=0, dataug_epoch_start
|
||||||
print("Couldn't save finals samples")
|
print("Couldn't save finals samples")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
#print("Copy ", countcopy)
|
|
||||||
return log
|
return log
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue