+controle mag reg + Tests fonction mag reg

This commit is contained in:
Harle, Antoine (Contracteur) 2020-02-25 14:05:17 -05:00
parent fc0fb25148
commit 534e244307
6 changed files with 45 additions and 22 deletions

View file

@ -29,11 +29,11 @@ optim_param={
res_folder="../res/benchmark/CIFAR10/"
#res_folder="../res/HPsearch/"
epochs= 400
epochs= 200
dataug_epoch_start=0
nb_run= 1
tf_config='../config/base_tf_config.json'
tf_config='../config/wide_tf_config.json' #'../config/wide_tf_config.json'#'../config/base_tf_config.json'
TF_loader=TF_loader()
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
@ -55,15 +55,16 @@ if __name__ == "__main__":
### Benchmark ###
#'''
n_inner_iter = 1#[0, 1]
inner_its = [3]
dist_mix = [0.5]
N_seq_TF= [3, 4]
N_seq_TF= [3]
mag_setup = [(False, False)] #[(True, True), (False, False)] #(FxSh, Independant)
for model_type in model_list.keys():
for model_name in model_list[model_type]:
for run in range(nb_run):
for n_inner_iter in inner_its:
for n_tf in N_seq_TF:
for dist in dist_mix:
for m_setup in mag_setup:

View file

@ -115,8 +115,17 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
if self._shared_mag :
self._reg_tgt = torch.tensor(TF.PARAMETER_MAX, dtype=torch.float) #Encourage amplitude max
else:
self._reg_mask=[self._TF.index(t) for t in self._TF if t not in self._TF_ignore_mag]
TF_mag=[t for t in self._TF if t not in self._TF_ignore_mag] #TF w/ differentiable mag
self._reg_mask=[self._TF.index(t) for t in TF_mag]
self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=TF.PARAMETER_MAX) #Encourage amplitude max
#Prevent Identity
#print(TF.TF_identity)
#self._reg_tgt=torch.full(size=(len(self._reg_mask),), fill_value=0.0)
#for val in TF.TF_identity.keys():
# idx=[self._reg_mask.index(self._TF.index(t)) for t in TF_mag if t in TF.TF_identity[val]]
# self._reg_tgt[idx]=val
#print(TF_mag, self._reg_tgt)
def forward(self, x):
""" Main method of the Data augmentation module.
@ -247,7 +256,8 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
else:
#return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean')
mags = self._params['mag'] if self._params['mag'].shape==torch.Size([]) else self._params['mag'][self._reg_mask]
max_mag_reg = reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean')
max_mag_reg = reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean') #Close to target ?
#max_mag_reg = - reg_factor * F.mse_loss(mags, target=self._reg_tgt.to(mags.device), reduction='mean') #Far from target ?
return max_mag_reg
def train(self, mode=True):

View file

@ -10,14 +10,15 @@ if __name__ == "__main__":
#"res/brutus-tests/log/Aug_mod(Data_augV5(Uniform-14TFx3-MagFxSh)-LeNet)-150epochs(dataug:0)-10in_it-2.json",
#"res/log/Aug_mod(RandAugUDA(18TFx2-Mag1)-LeNet)-100 epochs (dataug:0)- 0 in_it.json",
]
files = ["../res/benchmark/CIFAR10/log/RandAugment(N%d-M%.2f)-%s-200 epochs -%s.json"%(3,0.17,'wide_resnet50_2', str(run)) for run in range(3)]
files = ["../res/benchmark/CIFAR100/log/Aug_mod(Data_augV5(Mix%.1f-14TFx%d-Mag)-%s)-200 epochs (dataug:0)- 1 in_it-%s.json"%(0.5,3,'wide_resnet50_2', str(run)) for run in range(3)]
#files = ["../res/benchmark/CIFAR10/log/RandAugment(N%d-M%.2f)-%s-200 epochs -%s.json"%(3,0.17,'wide_resnet50_2', str(run)) for run in range(3)]
#files = ["../res/benchmark/CIFAR10/log/Aug_mod(RandAug(14TFx%d-Mag%d)-%s)-200 epochs (dataug:0)- 0 in_it-%s.json"%(2,1,'resnet18', str(run)) for run in range(1)]
files = ["../res/benchmark/CIFAR10/log/Aug_mod(Data_augV5(Mix%.1f-14TFx%d-Mag)-%s)-200 epochs (dataug:0)- 3 in_it-%s.json"%(0.5,3,'resnet18', str(run)) for run in range(1)]
for idx, file in enumerate(files):
#legend+=str(idx)+'-'+file+'\n'
with open(file) as json_file:
data = json.load(json_file)
plot_resV2(data['Log'], fig_name=file.replace("/log","").replace(".json",""))#, param_names=data['Param_names'])
plot_resV2(data['Log'], fig_name=file.replace("/log","").replace(".json",""), param_names=data['Param_names'], f1=True)
#plot_TF_influence(data['Log'], param_names=data['Param_names'])
#'''
## Loss , Acc, Proba = f(epoch) ##

View file

@ -34,13 +34,15 @@ if __name__ == "__main__":
}
#Parameters
n_inner_iter = 1
epochs = 2
epochs = 200
dataug_epoch_start=0
Nb_TF_seq=3
optim_param={
'Meta':{
'optim':'Adam',
'lr':1e-2, #1e-2
'epoch_start': 2, #0 / 2 (Resnet?)
'reg_factor': 0.001,
},
'Inner':{
'optim': 'SGD',
@ -110,7 +112,7 @@ if __name__ == "__main__":
#### Augmented Model ####
if 'aug_model' in tasks:
tf_config='../config/base_tf_config.json'
tf_config='../config/invScale_wide_tf_config.json'#'../config/base_tf_config.json'
tf_dict, tf_ignore_mag =TF_loader.load_TF_dict(tf_config)
torch.cuda.reset_max_memory_allocated() #reset_peak_stats
@ -118,15 +120,17 @@ if __name__ == "__main__":
t0 = time.perf_counter()
model = Higher_model(model, model_name) #run_dist_dataugV3
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=1,
mix_dist=0.5,
fixed_prob=False,
fixed_mag=False,
shared_mag=False,
TF_ignore_mag=tf_ignore_mag), model).to(device)
#aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=2), model).to(device)
if n_inner_iter !=0:
aug_model = Augmented_model(
Data_augV5(TF_dict=tf_dict,
N_TF=Nb_TF_seq,
mix_dist=0.5,
fixed_prob=False,
fixed_mag=False,
shared_mag=False,
TF_ignore_mag=tf_ignore_mag), model).to(device)
else:
aug_model = Augmented_model(RandAug(TF_dict=tf_dict, N_TF=Nb_TF_seq), model).to(device)
print("{} on {} for {} epochs - {} inner_it{}".format(str(aug_model), device_name, epochs, n_inner_iter, postfix))
log= run_dist_dataugV3(model=aug_model,
@ -134,7 +138,7 @@ if __name__ == "__main__":
inner_it=n_inner_iter,
dataug_epoch_start=dataug_epoch_start,
opt_param=optim_param,
print_freq=20,
print_freq=10,
unsup_loss=1,
hp_opt=False,
save_sample_freq=None)

View file

@ -329,7 +329,7 @@ def run_dist_dataugV3(model, opt_param, epochs=1, inner_it=1, dataug_epoch_start
if(high_grad_track and i>0 and i%inner_it==0 and epoch>=opt_param['Meta']['epoch_start']): #Perform Meta step
#print("meta")
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss()
val_loss = compute_vaLoss(model=model, dl_it=dl_val_it, dl=dl_val) + model['data_aug'].reg_loss(opt_param['Meta']['reg_factor'])
#print_graph(val_loss) #to visualize computational graph
val_loss.backward()

View file

@ -31,6 +31,13 @@ PARAMETER_MAX = 1
# What is the min 'level' a transform could be predicted
PARAMETER_MIN = 0.1
#Dict containing the value for wich TF are closer to identity
#TF_identity={
# PARAMETER_MAX:{'Solarize', 'Posterize'},
# PARAMETER_MAX/2:{'Contrast','Color','Brightness','Sharpness'},
# PARAMETER_MIN:{'Rotate','TranslateX','TranslateY','ShearX','ShearY'},
#}
class TF_loader(object):
""" Transformations builder.