Ajout RandAugment

This commit is contained in:
Harle, Antoine (Contracteur) 2019-11-27 12:54:19 -05:00
parent 3c2022de32
commit 4a7e73088d
4 changed files with 249 additions and 37 deletions

View file

@ -659,7 +659,7 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
return w_loss
def reg_loss(self, reg_factor=0.005):
if self._fixed_mag:
if self._fixed_mag: # or self._fixed_prob: #Pas de regularisation si trop peu de DOF
return torch.tensor(0)
else:
#return reg_factor * F.l1_loss(self._params['mag'][self._reg_mask], target=self._reg_tgt, reduction='mean')
@ -692,6 +692,174 @@ class Data_augV5(nn.Module): #Optimisation jointe (mag, proba)
else:
return "Data_augV5(Mix%.1f%s-%dTFx%d-%s)" % (self._mix_factor,dist_param, self._nb_tf, self._N_seqTF, mag_param)
class RandAug(nn.Module): #RandAugment = UniformFx-MagFxSh
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
super(RandAug, self).__init__()
self._data_augmentation = True
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
self.mag=nn.Parameter(torch.tensor(float(mag)))
self._params = nn.ParameterDict({
"prob": nn.Parameter(torch.ones(self._nb_tf)/self._nb_tf), #pas utilise
"mag" : nn.Parameter(torch.tensor(float(mag))),
})
self._shared_mag = True
self._fixed_mag = True
def forward(self, x):
if self._data_augmentation:# and TF.random.random() < 0.5:
device = x.device
batch_size, h, w = x.shape[0], x.shape[2], x.shape[3]
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
for _ in range(self._N_seqTF):
## Echantillonage ## == sampled_ops = np.random.choice(transforms, N)
uniforme_dist = torch.ones(1,self._nb_tf,device=device).softmax(dim=1)
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_tf), device=device)*uniforme_dist)
sample = cat_distrib.sample()
## Transformations ##
x = self.apply_TF(x, sample)
return x
def apply_TF(self, x, sampled_TF):
smps_x=[]
for tf_idx in range(self._nb_tf):
mask = sampled_TF==tf_idx #Create selection mask
smp_x = x[mask] #torch.masked_select() ? (NEcessite d'expand le mask au meme dim)
if smp_x.shape[0]!=0: #if there's data to TF
magnitude=self._params["mag"].detach()
tf=self._TF[tf_idx]
#print(magnitude)
#In place
x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
return x
def adjust_param(self, soft=False):
pass #Pas de parametre a opti
def loss_weight(self):
return 1 #Pas d'echantillon = pas de ponderation
def reg_loss(self, reg_factor=0.005):
return torch.tensor(0) #Pas de regularisation
def train(self, mode=None):
if mode is None :
mode=self._data_augmentation
self.augment(mode=mode) #Inutile si mode=None
super(RandAug, self).train(mode)
def eval(self):
self.train(mode=False)
def augment(self, mode=True):
self._data_augmentation=mode
def __getitem__(self, key):
return self._params[key]
def __str__(self):
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
class RandAugUDA(nn.Module): #RandAugment = UniformFx-MagFxSh
def __init__(self, TF_dict=TF.TF_dict, N_TF=1, mag=TF.PARAMETER_MAX):
super(RandAug, self).__init__()
self._data_augmentation = True
self._TF_dict = TF_dict
self._TF= list(self._TF_dict.keys())
self._nb_tf= len(self._TF)
self._N_seqTF = N_TF
self.mag=nn.Parameter(torch.tensor(float(mag)))
self._params = nn.ParameterDict({
"prob": nn.Parameter(torch.tensor(0.5)),
"mag" : nn.Parameter(torch.tensor(float(TF.PARAMETER_MAX))),
})
self._shared_mag = True
self._fixed_mag = True
self._op_list =[]
for tf in self._TF:
for mag in range(0.1, self._params['mag'], 0.1):
op_list+=[(tf, self._params['prob'], mag)]
self._nb_op = len(self._op_list)
print(self._op_list)
def forward(self, x):
if self._data_augmentation:# and TF.random.random() < 0.5:
device = x.device
batch_size, h, w = x.shape[0], x.shape[2], x.shape[3]
x = copy.deepcopy(x) #Evite de modifier les echantillons par reference (Problematique pour des utilisations paralleles)
for _ in range(self._N_seqTF):
## Echantillonage ## == sampled_ops = np.random.choice(transforms, N)
uniforme_dist = torch.ones(1, self._nb_op, device=device).softmax(dim=1)
cat_distrib= Categorical(probs=torch.ones((batch_size, self._nb_op), device=device)*uniforme_dist)
sample = cat_distrib.sample()
## Transformations ##
x = self.apply_TF(x, sample)
return x
def apply_TF(self, x, sampled_TF):
smps_x=[]
for op_idx in range(self._nb_op):
mask = sampled_TF==tf_idx #Create selection mask
smp_x = x[mask] #torch.masked_select() ? (Necessite d'expand le mask au meme dim)
if smp_x.shape[0]!=0: #if there's data to TF
if TF.random.random() < self.op_list[op_idx][1]:
magnitude=self.op_list[op_idx][2]
tf=self.op_list[op_idx][0]
#In place
x[mask]=self._TF_dict[tf](x=smp_x, mag=magnitude)
return x
def adjust_param(self, soft=False):
pass #Pas de parametre a opti
def loss_weight(self):
return 1 #Pas d'echantillon = pas de ponderation
def reg_loss(self, reg_factor=0.005):
return torch.tensor(0) #Pas de regularisation
def train(self, mode=None):
if mode is None :
mode=self._data_augmentation
self.augment(mode=mode) #Inutile si mode=None
super(RandAug, self).train(mode)
def eval(self):
self.train(mode=False)
def augment(self, mode=True):
self._data_augmentation=mode
def __getitem__(self, key):
return self._params[key]
def __str__(self):
return "RandAug(%dTFx%d-Mag%d)" % (self._nb_tf, self._N_seqTF, self.mag)
class Augmented_model(nn.Module):
def __init__(self, data_augmenter, model):